CFP last date
22 December 2025
Call for Paper
January Edition
IJCA solicits high quality original research papers for the upcoming January edition of the journal. The last date of research paper submission is 22 December 2025

Submit your paper
Know more
Random Articles
Reseach Article

Personalized Cancer Specific Molecule Design using Deep Reinforcement Learning

by Aljohara Hani Moaiteq Aljahdali, Salma Elhag
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Number 59
Year of Publication: 2025
Authors: Aljohara Hani Moaiteq Aljahdali, Salma Elhag
10.5120/ijca2025925996

Aljohara Hani Moaiteq Aljahdali, Salma Elhag . Personalized Cancer Specific Molecule Design using Deep Reinforcement Learning. International Journal of Computer Applications. 187, 59 ( Nov 2025), 29-35. DOI=10.5120/ijca2025925996

@article{ 10.5120/ijca2025925996,
author = { Aljohara Hani Moaiteq Aljahdali, Salma Elhag },
title = { Personalized Cancer Specific Molecule Design using Deep Reinforcement Learning },
journal = { International Journal of Computer Applications },
issue_date = { Nov 2025 },
volume = { 187 },
number = { 59 },
month = { Nov },
year = { 2025 },
issn = { 0975-8887 },
pages = { 29-35 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume187/number59/personalized-cancer-specific-molecule-design-using-deep-reinforcement-learning/ },
doi = { 10.5120/ijca2025925996 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-11-18T21:11:27.049794+05:30
%A Aljohara Hani Moaiteq Aljahdali
%A Salma Elhag
%T Personalized Cancer Specific Molecule Design using Deep Reinforcement Learning
%J International Journal of Computer Applications
%@ 0975-8887
%V 187
%N 59
%P 29-35
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Drug discovery remains a slow and costly process, limiting the rapid development of effective cancer therapies. This study presents a computational framework that applies Deep Reinforcement Learning (DRL) to generate novel molecules targeting the Epidermal Growth Factor Receptor (EGFR), a key cancer related protein. Bioactive compounds and molecular data were retrieved from ChEMBL and represented in Simplified Molecular Input Line Entry System (SMILES) format. Molecular descriptors were extracted using RDkit, and a DRL model (Proximal Policy Optimization) was trained to propose drug candidates optimized for EGFR binding. Generated molecules were evaluated through molecular docking using AutoDock Vina and Absorption, Distribution, Metabolism, Excretion, Toxicity (ADMET) profiles were predicted to assess therapeutic suitability. The top candidate exhibited strong binding affinity (-8.9 kcal/mol), ideal Root Mean Square Deviation (RMSD) (0.0), and favorable druglike properties. Incorporating patient specific data, including mutation type, HLA profile, and disease stage further improved binding affinity, demonstrating the value of personalized molecule optimization. This work demonstrates the potential of AI guided approaches to accelerate early-stage cancer drug discovery and provides a foundation for integrating computational and experimental methods within precision oncology.

References
  1. D. Engelhardt, J. Mach. Learn. Res., 21(203), 1–30, 2020.
  2. K. Gallagher et al., bioRxiv, 2023-04, 2023.
  3. J. Horwood and E. Noutahi, ACS Omega, 5(51), 32984–32994, 2020.
  4. M. Madondo et al., arXiv preprint, arXiv:2506.10073, 2025.
  5. K. Gallagher et al., Cancer Res., 84(11), 1929–1941, 2024.
  6. M. Korshunova et al., Commun. Chem., 5(1), 129, 2022.
  7. M. Liu, X. Shen, and W. Pan, Stat. Med., 41(20), 4034–4056, 2022.
  8. J. N. Eckardt et al., Cancers, 13(18), 4624, 2021.
  9. S. Pandiyan and L. Wang, Comput. Biol. Med., 150, 106140, 2022.
  10. C. Li et al., Phys. Med., 125, 104498, 2024.
  11. H. Mashayekhi et al., Comput. Methods Programs Biomed., 243, 107884, 2024.
  12. M. Popova, O. Isayev, and A. Tropsha, Sci. Adv., 4(7), eaap7885, 2018.
  13. R. Özçelik et al., J. Chem. Inf. Model., 65(14), 7352–7372, 2025.
  14. L. Wang et al., Pharmaceuticals, 16(2), 253, 2023.
  15. F. G. Albani et al., Drug Des. Dev. Ther., 5685–5707, 2025.
  16. H. G. Svensson et al., Mach. Learn., 113(7), 4811–4843, 2024.
  17. A. Ünlü et al., Nat. Mach. Intell., 1–17, 2025.
  18. M. H. N. Le et al., Biochim. Biophys. Acta, 167680, 2025.
  19. S. Herráiz-Gil et al., Appl. Sci., 15(5), 2798, 2025.
  20. Takahiro Eitsuka, Naoto Tatewaki, Hiroshi Nishida, Kiyotaka Nakagawa, and Teruo Miyazawa. 2016. Synergistic anticancer effect of tocotrienol combined with chemotherapeutic agents or dietary components: A review. International Journal of Molecular Sciences 17, 10 (2016), 1605.
Index Terms

Computer Science
Information Sciences

Keywords

DRL EGFR Personalized Medicine Molecular Docking ADMET AI Drug Design Precision Oncology