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ABSTRACT

Drug discovery remains a slow and costly process, limiting the
rapid development of effective cancer therapies. This study
presents a computational framework that applies Deep
Reinforcement Learning (DRL) to generate novel molecules
targeting the Epidermal Growth Factor Receptor (EGFR), a key
cancer related protein. Bioactive compounds and molecular
data were retrieved from ChEMBL and represented in
Simplified Molecular Input Line Entry System (SMILES)
format. Molecular descriptors were extracted using RDkit, and
a DRL model (Proximal Policy Optimization) was trained to
propose drug candidates optimized for EGFR binding.
Generated molecules were evaluated through molecular
docking using AutoDock Vina and Absorption, Distribution,
Metabolism, Excretion, Toxicity (ADMET) profiles were
predicted to assess therapeutic suitability. The top candidate
exhibited strong binding affinity (-8.9 kcal/mol), ideal Root
Mean Square Deviation (RMSD) (0.0), and favorable druglike
properties. Incorporating patient specific data, including
mutation type, HLA profile, and disease stage further improved
binding affinity, demonstrating the value of personalized
molecule optimization. This work demonstrates the potential of
Al guided approaches to accelerate early-stage cancer drug
discovery and provides a foundation for integrating
computational and experimental methods within precision
oncology.
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1. INTRODUCTION

Global cancer drug development continues to face major
challenges, including high costs, lengthy timelines, and
frequent clinical trial failures. Traditional discovery
approaches often depend on trial-and-error experimentation,
slowing the delivery of effective therapies to patients. DRL
offers a data driven framework capable of analyzing complex
biological information to design therapeutic compounds
efficiently. Its ability to learn optimal strategies in changing
environments makes it well suited for addressing tumor
diversity and variability in patient drug response. Unlike prior
DRL models that focus on general molecular design, this study
integrates patient specific features such as mutation type, HLA
profile, and disease stage into reward shaping for molecular
generation. The central hypothesis of this study is that
incorporating patient level data into DRL guided molecule
design enhances therapeutic specificity while minimizing off
target toxicity. Therefore, this research addresses the question:
“How can DRL be applied to generate novel EGFR targeting
molecules optimized for personalized cancer therapy?”. EGFR
was selected as the biological target due to its pivotal role in
the progression of lung, breast, and colorectal cancers and its
contribution to therapeutic resistance. By integrating patient
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specific biological and clinical information, this work aims to
accelerate early phase drug discovery and improve the
precision of candidate selection.

The remainder of this paper is structed as follows: Section 2
presents a literature review, summarizing current
advancements in DRL for drug design and cancer therapy.
Section 3 outlines the proposed methodology, including data
collection, compound filtering, molecular descriptor extraction,
DRL model design, and patient specific optimization steps.
Section 4 presents the results and discussion, including docking
results, binding affinity scores, and ADMET evaluations of the
generated molecules, emphasizing their potential effectiveness
and relevance for personalized treatment. Finally, section 5
concludes by summarizing key findings, discussing the impact
of DRL on personalized drug discovery, and outlining
directions for future research, including experimental
validation.

2. LITERATURE REVIEW

Recent advances in DRL have demonstrated its significant
potential in optimizing cancer therapy and accelerating the
process of drug discovery.

Engelhardt, D. (2020) [1] introduces CelluDose, a DRL
framework designed to adaptively control emergent drug
resistance in unpredictable cell populations. Unlike traditional
dosing strategies, CelluDose is trained through stochastic
simulations reflecting realistic mutation driven cell evolution.
The DRL agent learned dosing policies that dynamically
balanced efficacy and toxicity, achieving high suppression of
harmful cells while maintaining minimal baseline dosing when
resistance does not emerge. This study demonstrates how
model free DRL guided by trajectory information for reward
shaping can outperform traditional control methods in highly
stochastic biological systems.

Gallagher, Kit, et al. (2023) [2] proposed a DRL based adaptive
cancer therapy framework for treatment resistant prostate
cancer. Rather than attempting to eliminate all tumor cells, their
method maintained a stable population of drug sensitive cells
to suppress resistant ones. DRL agents learned dosing
strategies that extended treatment duration by up to 25%
compared to existing clinical approaches. Despite its complex
models, the approach produced simple interpretable rules based
on tumor size and behavior, demonstrating adaptability to
changing disease conditions.

Horwood and Noutahi (2020) [3] focused on improving
molecular design by training DRL models to prioritize
compounds based on both biological activity and synthetic
accessibility. Their system guided molecule generation toward
compounds that were not only bioactive but also synthetically
feasible, a crucial factor in early-stage drug development where
time and cost constraints are significant. This study highlighted
the capacity of DRL to balance chemical creativity with real
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world feasibility.

Madondo et al. (2025) [4] developed a patient specific DRL
system for automatic replanning of proton therapy in head and
neck cancer. Incorporating individual patient data allowed the
model to optimize treatment schedules, improving therapeutic
efficacy and minimizing side effects. This study showcased the
potential of DRL to personalize cancer therapy and move
toward Al guided precision oncology.

The Mathematical Model Team (2024) [5] integrated
mechanistic tumor growth modelling with DRL to guide
adaptive therapy dosing decisions. Their hybrid system
dynamically adjusted drug dosing based on real time tumor data
aiming to maximize efficacy while reducing toxicity. The
integration of mechanistic models with data driven
reinforcement learning represented a significant step toward
clinical decision support systems capable of personalized
treatment.

Korshunova et al. (2022) [6] combined generative neural
networks with reinforcement learning to optimize the de novo
design of EGFR inhibitors. By employing strategies such as
policy gradients and experience replay, the study addressed
sparse reward issues commonly encountered in drug discovery.
The resulting molecules demonstrated strong predicted activity
and favorable druglike properties, reinforcing DRL’s potential
in cancer targeted molecular generation.

Liu et al. (2022) [7] introduced a DRL framework termed
Proximal Policy Optimization Ranking (PPORank), which
modelled treatment recommendation as a Markov Decision
Process. Using patient specific clinical data, PPORank learned
optimal ranking policies for drug selection and demonstrated
superior performance over supervised learning methods in
precision oncology applications.

Eckardt et al. (2021) [8] reviewed the application of
reinforcement learning in precision oncology, highlighting its
ability to model complex treatment scenarios ad adapt
dynamically to patient response. Although they noted
challenges such as limited clinical data and workflow
integration, the review emphasized DRL’s success in tumor
modelling and adaptive planning.

Pandiyan et al. (2022) [9] provided a comprehensive review of
Al approaches for anti-cancer drug discovery, including DRL
techniques for de novo molecular design. They identified
DRL’s capability to efficiently explore chemical space and
generate compounds optimized for pharmacological activity.

Li et al. (2024) [10] demonstrated the use of DRL in radiation
therapy planning, automating complex treatment designs while
preserving clinical accuracy. This study underscored the
broader applicability of DRL in adaptive oncology decision
making beyond drug discovery.

Mashayakhi et al. (2024) [11] developed a model free DRL
framework for closed loop chemotherapy control. By
dynamically adjusting drug dosing according to tumor
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response, the system improved treatment outcomes and
minimized toxicity, suggesting DRL’s potential to enhance
clinical treatment scheduling.

Popova et al. (2018) [12] introduced ReleaSE, a hybrid DRL
framework that combined generative and predictive models for
de novo molecular design. The system successfully produced
novel chemical structures optimized for biological activity,
providing evidence that reinforcement learning can accelerate
early-stage drug discovery.

Ozgelik et al. (2025) [13] explored generative deep learning
and DRL techniques for de novo drug design using graph
transformer models. Their work demonstrated how
reinforcement learning can refine molecular generation to
preserve drug likeness while optimizing target specificity.

Wang et al. (2023) [14] analyzed Al frameworks, including
DRL throughout the oncology drug development pipeline.
Their findings indicated that reinforcement learning enhances
both efficiency and compound selectivity.

Albani et al. (2025) [15] reviewed Al driven strategies in
oncology drug discovery, showing that DRL integration can
reduce experimental workloads and improve the prioritization
of promising compounds.

Svensson et al. (2023) [16] proposed a comprehensive
reinforcement learning framework for molecular generation,
testing multiple algorithmic approaches to optimize chemical
structures. The results demonstrated DRL’s effectiveness in
simultaneously improving predicted activity and drug likeness.

Unlii et al. (2023) [17] developed DrugGEN, a graph
transformer based generative adversarial network enhanced
with reinforcement learning to design protein specific
molecules. The generated compounds showed high predicted
binding affinity, confirming the potential of DRL in structure-
based drug design.

Le et al. (2025) [18] reviewed emerging Al applications in
cancer drug discovery, emphasizing the role DRL in lead
optimization and molecular prioritization. Their analysis
highlighted AI’s ability to streamline candidate selection and
accelerate development.

Herraiz-Gil et al. (2025) [19] discussed reinforcement learning
for drug repurposing and novel molecule generation,
demonstrating its adaptability across multiple stages of drug
development.

As Table 1 shows, prior research has demonstrated the potential
of DRL in drug design and adaptive cancer therapy, but most
studies focused on generalized simulations or model driven
predictions. Few considered patient specific factors when
generating molecules. This study builds on these efforts by
applying DRL to design EGFR targeting compounds while
incorporating individual patient characteristics to improve
binding and predicted effectiveness.
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Table 1. Comparative summary of previous DRL studies showing their aims, methods, limitations, and key results.

Study

Aim

Method

Limitation

Key Result

Engelhardt (2020)

Adaptive control of
emergent drug
resistance

DRL

(Celludose) trained on
random cell population
models

Computational only, no
experimental testing

High suppression of
harmful cells with
minimal dosing.

Demonstrates DRL in
stochastic biological
systems.

Gallagher et al. (2023)

Adaptive therapy for
treatment Resistant
prostate cancer

Allegiant maintains
population of sensitive
cells

Focused on only
prostate cancer, limited
general use

Extended time to
treatment failure by
25%

Horwood & Noutahi
(2020)

Molecular design
focused on chemical
realism

DRL model with
design limitations

Early stage with
limited lab evaluation

Generated realistic and
chemically valid drug
like molecules

Madondo et al. (2025)

Personalized proton
therapy replanning

DRL with

patient specific data

Applied only to proton
therapy, not yet
clinically proven

Improved treatment
timing and reduced
potential side effects

Mathematical Model
Team (2024)

Adaptive therapy
dosing decisions

Biological tumor
growth model
combined with

DRL

Simulation based, lacks
real world validation

Merged biological
modelling and RL for
more personalized
dosing

Korshunova et al.

De novo EGFR

Generative neural

Based on computer

Create new compounds

(2022) inhibitor design networks with RL models, not with strong predicted
experimentally activity
confirmed
Liu et al. (2022) Personalized cancer DRL Needs larger clinical Outperformed
treatment . validation supervised learning for
recommendations (PPORank) using MDP precision oncology
RL in precision Review of RL Limited use of real Highlighted the role of
Eckardt et al. (2021) oncology applications patient data RL in adaptive and
patient specific therapy
Pandiyan & Al approaches for Review including DRL | Mostly computational, | Showed that DRL can
anticancer drug for de Novo molecular | minimal experimental explore chemical
Wang (2022) discovery design testing spaces efficiently
Li et al. (2024) Improving radiation DRL for dosing Focused on radiation Automated planning
therapy planning therapy only while keeping clinical
accuracy
Mashayekhi et al. Closed loop Model free Needs clinical Improved treatment
chemotherapy control validation timing and reduced
(2024) DRL toxicity in simulations
De novo molecular DRL (ReleaSE) Fully computational Generated molecules

Popova et al. (2018)

design

Combining generative

approach

with strong activity and

and predictive models druglike properties
Generative deep Graph transformer with | Results limited to Explored large
Ozgelik et al. (2025) learning in drug design | RL computer testing chemical space while
keeping drug properties
stable
Al frameworks for Review of Al and DRL | General review, few Showed DRL can

Wang et al. (2023)

oncology drug
development

across the drug
development process

detailed case examples

improve drug activity
and selectivity

Albani et al. (2025)

Al driven strategies in
oncology drug

Review including DRL

Theoretical focus, not
tested experimentally

Demonstrated higher
efficiency and reduced
workload in early
research

Svensson et al. (2023)

Molecular generation
using

RL

Multiple RL
approaches for
molecule design

Based only on
simulations, lacks lab
testing

Generated molecules

meeting multiple
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design
criteria
Unlii et al. (2023) Target specific Graph transformer Computational Designed high affinity
molecule design GAN with RL predictions only molecules for protein
targets
Le et al. (2025) Al in cancer drug Review of Al and DRL | Broad overview, Showed how Al can

discovery techniques limited experimental speed up identification
data of potential drugs
Herraiz-Gil et al. Al assisted drug RL guided molecule Computational Suggested new
2025 repurposing generation predictions, not yet possible uses for
( ) validated existing drugs

Although DRL has shown success in molecular design and
adaptive therapy, few studies integrate patient-specific data
such as mutation profiles or disease stage. This study addresses
this gap by designing EGFR-targeting molecules that
incorporate individual patient characteristics to improve
binding affinity and drug-like properties.

3. Methodology

This section will present the methodology steps used in the
study.

1.Target Overview 2. Data Collection & 3. Model Traning 4. Docking &
Preparation Simulation
Access the ChEMBL Retrieve bioactivity data Train a DRL model with Optimize molecules
database to identify and SMILES for EGFR » molecular descriptors to through docking and
and select EGFR as the compounds, filter by key generate molecules ADMET simulations, using

target protein involved properties, and convert optimized for target patient data for
n the disease SMILES into molecular properties. personalization
descriptors.

Figure 1. Workflow of the EGFR targeted drug design
methodology showing the steps from target identification
and data collection to DRL model training and
personalized docking.

3.1 Target Identification

The target selected for this study was EGFR, a cell surface
protein known to play a critical role in cancer cell growth and
survival. EGFR was chosen due to its importance in cancer
progression and its involvement in drug resistance across
multiple tumor types. Information about this target was
obtained from the ChEMBL database, a well-established
resource containing structured data on bioactive molecules.
The target was identified using its specific ChEMBL ID:
CHEMBL4523998.
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Figure 2. EGFR structure and signaling pathway invelved
in cancer cell growth and survival.

3.2 Compound and Bioactivity Retrieval
After selecting the target, a search was conducted in the
ChEMBL database to collect compounds associated with

EGFR. For each compound its SMILES representation and its

binding strength data such as ICso were retrieved. ICso refers to
the concentration of a compound required to inhibit 50% of the
target activity, with lower values indicating stronger inhibition.
These data formed as the foundation for analyzing compound
target interactions and were used to train the molecule
generation model.

3.3 Compound Filtering

At this stage, the extracted compounds were screened using
predefined research-based standards. Compounds with weak
binding affinity or limited experimental evidence were
excluded. The section chose molecules demonstrating strong
activity, suitable druglike properties, and reliable experimental
validation, ensuring the dataset contained only potent and
structurally appropriate compounds.
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Figure 3. Compound filtering workflow based on binding
affinity and drug likeness requirements to select potent
molecules for further analysis.

3.4 Feature Extraction

In this phase the SMILES strings of the selected compounds
were converted into molecular descriptors  using
cheminformatics libraries such as RDKit. These descriptors are
calculated features that represent chemical and structural
characteristics including molecular weight, shape, and
hydrogen bonding capacity. They served as numerical input
features for model training.

3.5 DRL Based Molecule Generation

During this step, a DRL model was trained to design new
molecules capable of effectively binding to EGFR. DRL
combines reinforcement learning with deep neural networks to
optimize decision making processes. The model used the
molecular descriptors from the filtered compounds as input. It
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received rewards for molecules predicted to have strong
binding affinity, favorable druglike properties, and low toxicity
as shown in the equation below.

Reward=oaxBinding Affinity+pxDrug Likeness — y x Toxicity

Equation 1. reward function in DRL assigning higher scores to
molecules that bind EGFR strongly, have good druglike
properties, and show low toxicity.

Patient specific data such as mutation type and cancer stage
were incorporated to enhance therapeutic relevance. Training
was performed in python using RDKit and a DRL framework
designed for molecular generation. Generated molecules were

sorted as SMILES and their predicted pICso values were
calculated for prioritization. (pICso is the negative logarithm of
the ICso value where higher pICso indicates greater inhibitory
potency and makes data easier to compare.)

Agent

(Deep Neural Network)

Action (SMIELS) Abtion

|

Environment A
(Molecular Simulator) 0

| Evaluate: Binding Affainity,
Drug-liikness, Toxicity

" ;
New State l‘
(Molecular  SBJll Reward = a* Binding Affainity
Desciritors) B Drug-likness -y Toxicity

Figure 4. A basic overview of DRL showing how the model
learns by interacting with an environment and receiving
rewards to improve its decisions.

3.6 ADMET Optimization

At this stage the generated molecules were evaluated for their
ADMET profiles using predictive computational tools. The
goal was to optimize drug likeness and minimize potential
toxicity. When possible, patient specific data were incorporated
to enhance the biological relevance of these predictions.

3.7 Molecule Docking and Simulation

In this final phase molecular docking simulations (e.g. using
AutoDock Vina) were followed by molecular dynamics to
validate binding stability and behavior under physiological
conditions. The predicted pICso values were used to assess the

relative potency and efficacy of the generated compounds., a
scale representing the negative logarithm of ICso (half maximal

inhibitory concentration) where higher pICso values indicate
more potent inhibition making data easier to interpret and
compare. Lipiniski’s Rule of Five then evaluated the oral
bioavailability of the compounds: optimal candidates typically
have molecular weight < 500 Da, < 5 hydrogen bond donors, <
10 acceptors, and a log P < 5. Finally, ADMET properties were
predicted using computational tools to ensure the molecules
exhibit favorable pharmacokinetics and safety profiles before
experimental validation.

4. RESULTS AND DISCUSSION

The generated molecules demonstrated strong predicted
binding affinity toward EGFR and exhibited favorable docking
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conformations as summarized in table 2. These results indicate
that the designed compounds were able to effectively occupy
the active binding pocket of the target receptor with stable
orientations.

Table 2. Binding affinity score and RMSD values of top
candidate molecules.

Binding Affinity Score | Ds form | Best Mode
(kcal/mol) (RMSD) (RMSD)
1] -89 0.0 0.0
2| -83 1.234 2.50
31-73 2.110 3.098

Molecule 1 exhibited the highest binding affinity (-8.9
kcal/mol) and an ideal RMSD of 0, indicating the most stable
docking conformation. Molecule 2 and 3 also showed favorable
binding scores (-8.3 kcal/mol) and (-7.3 kcal/mol) with slightly
higher RMSD values that still reflect acceptable docking
precision.

Figure 5 compares the predicted binding affinity and RMSD
values, Ds form and Best Mode for the three generated
molecules. Molecule 1 shows the most favorable profile with
the lowest binding affinity (-8.9 kcal/mol) and minimal RMSD,
indicating a highly stable and well oriented binding orientation
within the EGFR active site. Molecules 2 and 3 exhibit slightly
weaker binding and higher RMSD confirms that stronger
binding corresponds to more precise and consistent molecular
positioning during docking.

wm Bind

Figure 5. Binding affinity score and RMSD for a three
generated molecule.

We analyzed the SMILES and IC50 values of the molecules
supporting their biological activity and potential effectiveness.

Table 3. SMILES and ICS50 values of the top candidates.

SMILES IC50 (nM)

CC1=CC=C(C=C1NC(=0)C2=CC=CC=C2 154.6546234527607

COC1=CC=C{C=C1)C(=0)N2CCCCC2 77.64416595447096

CN(C)CCOC1 =CC=CC=CIC 50.70760441055491

C1=CC=C(C=C1)C(CNC2=CC=CC=C2)=0 97.1988046319471

CC{CHCINC(=0)C1=CC=CC=C1 176.05255988630864

COC1=CC=CC=C10C 201.39989974418162

CCC1=CC=CC=CINC(=0)C 271.7142833316617

CCOC(=0)C1=CC=CC=C1Br 212.50128462963093

CN(C)C1=CC=CC=C1 344.18365269639594

Cl=CC=CC=C1C(=0)NC 106.20386361710113

To further refine the generated molecules, patient specific data
was incorporated. This personalized optimization influenced
predicted binding affinity, ADMET properties, and RMSD,
ensuring that molecules were tailored for individual therapeutic
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contexts.

Patient_ID: POO1

Tumor_Type: NSCLC

Mutation: EGFR L858R + PD-L1 overexpression
HLA_ Type: HLA-A*02:01

Preferred_Binder: PD1_MOL_2

Therapeutic_Suggestion: Immune checkpoint inhibitor + targeted therapy

Figure 6. Patient data was used for personalized drug
optimization.

Figure 7 present toxicity levels and Lipinski compliance for the
top candidates confirming that the molecules meet drug
likeness criteria well minimizing predicted toxicity. Figure 8
shows the distribution of binding affinity relative to
hepatotoxicity risk indicating that molecules with higher
binding affinity generally maintain acceptable liver toxicity
profiles. Figure 9 correlates binding affinity with patient age,
treatment response, and disease stage illustrating the impact of
personalization on predicted molecular efficacy.
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Figure 7. Toxicity levels Lipinski compliance.

Binding Affinity Distribution by Hepatotoxicity Risk

Binding Affinity (kcal/mol)

Moderate High Low
Hepatotoxicity_Risk

Figure 8. Binding affinity distribution by hepatotoxicity
risk.

Binding Affinity vs. Patient Age by Response History
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Figure 9. Binding affinity vs. patient age by response history and disease stage.

5. CONCLUSION

The findings of this study demonstrate that DRL can effectively
generate novel molecules targeting EGFR achieving high
predicted binding affinity and favorable biochemical profiles.
The optimized compounds exhibited strong and stable binding
orientations, met drug likeness criteria, and showed low
predicted toxicity indicating their potential as promising leads
for further cancer drug development. Incorporating patient
specific information such as mutation type, HLA profile, and
disease stage, enhanced molecular binding precision and
emphasized the importance of personalization in therapeutic

design. This research provides evidence that AI guided
molecular generation can significantly accelerate early phase
drug discovery and improve the specificity of cancer therapies.
Future work should include lab experimental validation to test
the ability of designed molecules to inhibit EGFR activity and
to verify computational predictions. Expanding the model to
include larger and more diverse datasets, additional cancer
targets, and broader molecular descriptors would further
strengthen its predictive capability. Additionally integrating
multi objective optimization methods could enable
simultaneous improvements of efficacy, safety, and synthesis
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feasibility paving the way for fully automated patient tailored
drug discovery.

6. ACKNOWLEDGMENTS

This research was supported by the King Abdulaziz and His
Companions Foundation for Giftedness and Creativity
(Mawhiba). Sincere thanks to my school Al Andalus Mawhiba
Al Shati Branch, for their continuous support, encouragement,
and for providing a positive environment that made this
research possible.

7. REFERENCES
[ D. Engelhardt, J. Mach. Learn. Res., 21(203), 1-30, 2020.

1]
[2] K. Gallagher et al., bioRxiv, 2023-04, 2023.
]

[3] J. Horwood and E. Noutahi, ACS Omega, 5(51), 32984—
32994, 2020.

[4] M. Madondo et al., arXiv preprint, arXiv:2506.10073,
2025.

[5] K. Gallagher et al., Cancer Res., 84(11), 1929-1941,
2024.
[6] M. Korshunova et al., Commun. Chem., 5(1), 129, 2022.

[71 M. Liu, X. Shen, and W. Pan, Stat. Med., 41(20), 4034—
4056, 2022.

[8] J.N. Eckardt et al., Cancers, 13(18), 4624, 2021.

[JCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.59, November 2025

[9] S. Pandiyan and L. Wang, Comput. Biol. Med., 150,
106140, 2022.

[10] C. Li et al., Phys. Med., 125, 104498, 2024.

[11] H. Mashayekhi et al., Comput. Methods Programs
Biomed., 243, 107884, 2024.

[12] M. Popova, O. Isayev, and A. Tropsha, Sci. Adv., 4(7),
eaap7885, 2018.

[13] R. Ozgelik et al., J. Chem. Inf. Model., 65(14), 7352—
7372, 2025.

[14] L. Wang et al., Pharmaceuticals, 16(2), 253, 2023.

[15] F. G. Albani et al., Drug Des. Dev. Ther., 5685-5707,
2025.

[16] H. G. Svensson et al., Mach. Learn., 113(7), 48114843,
2024.

17] A. Unlii et al., Nat. Mach. Intell., 1-17, 2025.

18] M. H. N. Le et al., Biochim. Biophys. Acta, 167680, 2025.

19] S. Herraiz-Gil et al., Appl. Sci., 15(5), 2798, 2025.

20] Takahiro Eitsuka, Naoto Tatewaki, Hiroshi Nishida,
Kiyotaka  Nakagawa, and Teruo  Miyazawa.
2016. Synergistic —anticancer effect of tocotrienol
combined with chemotherapeutic agents or dietary

components: A review. International  Journal of
Molecular Sciences 17, 10 (2016), 1605.

[17]
(18]
[19]
[20]

35



