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ABSTRACT 

Drug discovery remains a slow and costly process, limiting the 

rapid development of effective cancer therapies. This study 

presents a computational framework that applies Deep 

Reinforcement Learning (DRL) to generate novel molecules 

targeting the Epidermal Growth Factor Receptor (EGFR), a key 

cancer related protein. Bioactive compounds and molecular 

data were retrieved from ChEMBL and represented in 

Simplified Molecular Input Line Entry System (SMILES) 

format. Molecular descriptors were extracted using RDkit, and 

a DRL model (Proximal Policy Optimization) was trained to 

propose drug candidates optimized for EGFR binding. 

Generated molecules were evaluated through molecular 

docking using AutoDock Vina and Absorption, Distribution, 

Metabolism, Excretion, Toxicity (ADMET) profiles were 

predicted to assess therapeutic suitability. The top candidate 

exhibited strong binding affinity (-8.9 kcal/mol), ideal Root 

Mean Square Deviation (RMSD) (0.0), and favorable druglike 

properties. Incorporating patient specific data, including 

mutation type, HLA profile, and disease stage further improved 

binding affinity, demonstrating the value of personalized 

molecule optimization. This work demonstrates the potential of 

AI guided approaches to accelerate early-stage cancer drug 

discovery and provides a foundation for integrating 

computational and experimental methods within precision 

oncology. 
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1. INTRODUCTION 
Global cancer drug development continues to face major 

challenges, including high costs, lengthy timelines, and 

frequent clinical trial failures. Traditional discovery 

approaches often depend on trial-and-error experimentation, 

slowing the delivery of effective therapies to patients. DRL 

offers a data driven framework capable of analyzing complex 

biological information to design therapeutic compounds 

efficiently. Its ability to learn optimal strategies in changing 

environments makes it well suited for addressing tumor 

diversity and variability in patient drug response. Unlike prior 

DRL models that focus on general molecular design, this study 

integrates patient specific features such as mutation type, HLA 

profile, and disease stage into reward shaping for molecular 

generation. The central hypothesis of this study is that 

incorporating patient level data into DRL guided molecule 

design enhances therapeutic specificity while minimizing off 

target toxicity. Therefore, this research addresses the question: 

“How can DRL be applied to generate novel EGFR targeting 

molecules optimized for personalized cancer therapy?”. EGFR 

was selected as the biological target due to its pivotal role in 

the progression of lung, breast, and colorectal cancers and its 

contribution to therapeutic resistance. By integrating patient 

specific biological and clinical information, this work aims to 

accelerate early phase drug discovery and improve the 

precision of candidate selection. 

The remainder of this paper is structed as follows: Section 2 

presents a literature review, summarizing current 

advancements in DRL for drug design and cancer therapy. 

Section 3 outlines the proposed methodology, including data 

collection, compound filtering, molecular descriptor extraction, 

DRL model design, and patient specific optimization steps. 

Section 4 presents the results and discussion, including docking 

results, binding affinity scores, and ADMET evaluations of the 

generated molecules, emphasizing their potential effectiveness 

and relevance for personalized treatment. Finally, section 5 

concludes by summarizing key findings, discussing the impact 

of DRL on personalized drug discovery, and outlining 

directions for future research, including experimental 

validation. 

2. LITERATURE REVIEW 
Recent advances in DRL have demonstrated its significant 

potential in optimizing cancer therapy and accelerating the 

process of drug discovery. 

Engelhardt, D. (2020) [1] introduces CelluDose, a DRL 

framework designed to adaptively control emergent drug 

resistance in unpredictable cell populations. Unlike traditional 

dosing strategies, CelluDose is trained through stochastic 

simulations reflecting realistic mutation driven cell evolution. 

The DRL agent learned dosing policies that dynamically 

balanced efficacy and toxicity, achieving high suppression of 

harmful cells while maintaining minimal baseline dosing when 

resistance does not emerge. This study demonstrates how 

model free DRL guided by trajectory information for reward 

shaping can outperform traditional control methods in highly 

stochastic biological systems. 

Gallagher, Kit, et al. (2023) [2] proposed a DRL based adaptive 

cancer therapy framework for treatment resistant prostate 

cancer. Rather than attempting to eliminate all tumor cells, their 

method maintained a stable population of drug sensitive cells 

to suppress resistant ones. DRL agents learned dosing 

strategies that extended treatment duration by up to 25% 

compared to existing clinical approaches. Despite its complex 

models, the approach produced simple interpretable rules based 

on tumor size and behavior, demonstrating adaptability to 

changing disease conditions. 

Horwood and Noutahi (2020) [3] focused on improving 

molecular design by training DRL models to prioritize 

compounds based on both biological activity and synthetic 

accessibility. Their system guided molecule generation toward 

compounds that were not only bioactive but also synthetically 

feasible, a crucial factor in early-stage drug development where 

time and cost constraints are significant. This study highlighted 

the capacity of DRL to balance chemical creativity with real 
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world feasibility. 

Madondo et al. (2025) [4] developed a patient specific DRL 

system for automatic replanning of proton therapy in head and 

neck cancer. Incorporating individual patient data allowed the 

model to optimize treatment schedules, improving therapeutic 

efficacy and minimizing side effects. This study showcased the 

potential of DRL to personalize cancer therapy and move 

toward AI guided precision oncology. 

The Mathematical Model Team (2024) [5] integrated 

mechanistic tumor growth modelling with DRL to guide 

adaptive therapy dosing decisions. Their hybrid system 

dynamically adjusted drug dosing based on real time tumor data 

aiming to maximize efficacy while reducing toxicity. The 

integration of mechanistic models with data driven 

reinforcement learning represented a significant step toward 

clinical decision support systems capable of personalized 

treatment. 

Korshunova et al. (2022) [6] combined generative neural 

networks with reinforcement learning to optimize the de novo 

design of EGFR inhibitors. By employing strategies such as 

policy gradients and experience replay, the study addressed 

sparse reward issues commonly encountered in drug discovery. 

The resulting molecules demonstrated strong predicted activity 

and favorable druglike properties, reinforcing DRL’s potential 

in cancer targeted molecular generation. 

Liu et al. (2022) [7] introduced a DRL framework termed 

Proximal Policy Optimization Ranking (PPORank), which 

modelled treatment recommendation as a Markov Decision 

Process. Using patient specific clinical data, PPORank learned 

optimal ranking policies for drug selection and demonstrated 

superior performance over supervised learning methods in 

precision oncology applications. 

Eckardt et al. (2021) [8] reviewed the application of 

reinforcement learning in precision oncology, highlighting its 

ability to model complex treatment scenarios ad adapt 

dynamically to patient response. Although they noted 

challenges such as limited clinical data and workflow 

integration, the review emphasized DRL’s success in tumor 

modelling and adaptive planning. 

Pandiyan et al. (2022) [9] provided a comprehensive review of 

AI approaches for anti-cancer drug discovery, including DRL 

techniques for de novo molecular design. They identified 

DRL’s capability to efficiently explore chemical space and 

generate compounds optimized for pharmacological activity. 

Li et al. (2024) [10] demonstrated the use of DRL in radiation 

therapy planning, automating complex treatment designs while 

preserving clinical accuracy. This study underscored the 

broader applicability of DRL in adaptive oncology decision 

making beyond drug discovery.  

Mashayakhi et al. (2024) [11] developed a model free DRL 

framework for closed loop chemotherapy control. By 

dynamically adjusting drug dosing according to tumor 

response, the system improved treatment outcomes and 

minimized toxicity, suggesting DRL’s potential to enhance 

clinical treatment scheduling.  

Popova et al. (2018) [12] introduced ReleaSE, a hybrid DRL 

framework that combined generative and predictive models for 

de novo molecular design. The system successfully produced 

novel chemical structures optimized for biological activity, 

providing evidence that reinforcement learning can accelerate 

early-stage drug discovery.  

Özçelik et al. (2025) [13] explored generative deep learning 

and DRL techniques for de novo drug design using graph 

transformer models. Their work demonstrated how 

reinforcement learning can refine molecular generation to 

preserve drug likeness while optimizing target specificity.  

Wang et al. (2023) [14] analyzed AI frameworks, including 

DRL throughout the oncology drug development pipeline. 

Their findings indicated that reinforcement learning enhances 

both efficiency and compound selectivity.  

Albani et al. (2025) [15] reviewed AI driven strategies in 

oncology drug discovery, showing that DRL integration can 

reduce experimental workloads and improve the prioritization 

of promising compounds. 

Svensson et al. (2023) [16] proposed a comprehensive 

reinforcement learning framework for molecular generation, 

testing multiple algorithmic approaches to optimize chemical 

structures. The results demonstrated DRL’s effectiveness in 

simultaneously improving predicted activity and drug likeness.  

Ünlü et al. (2023) [17] developed DrugGEN, a graph 

transformer based generative adversarial network enhanced 

with reinforcement learning to design protein specific 

molecules. The generated compounds showed high predicted 

binding affinity, confirming the potential of DRL in structure-

based drug design.  

Le et al. (2025) [18] reviewed emerging AI applications in 

cancer drug discovery, emphasizing the role DRL in lead 

optimization and molecular prioritization. Their analysis 

highlighted AI’s ability to streamline candidate selection and 

accelerate development. 

Herráiz-Gil et al. (2025) [19] discussed reinforcement learning 

for drug repurposing and novel molecule generation, 

demonstrating its adaptability across multiple stages of drug 

development.  

As Table 1 shows, prior research has demonstrated the potential 

of DRL in drug design and adaptive cancer therapy, but most 

studies focused on generalized simulations or model driven 

predictions. Few considered patient specific factors when 

generating molecules. This study builds on these efforts by 

applying DRL to design EGFR targeting compounds while 

incorporating individual patient characteristics to improve 

binding and predicted effectiveness. 
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Table 1. Comparative summary of previous DRL studies showing their aims, methods, limitations, and key results. 

Study  Aim  Method  Limitation  Key Result  

Engelhardt (2020)  Adaptive control of 

emergent drug 

resistance  

DRL  

(Celludose) trained on 

random cell population 

models  

Computational only, no 

experimental testing  
High suppression of 

harmful cells with 

minimal dosing.  

Demonstrates DRL in 

stochastic biological 

systems.  

Gallagher et al. (2023)  Adaptive therapy for 

treatment Resistant 

prostate cancer  

Allegiant maintains 

population of sensitive 

cells  

Focused on only 

prostate cancer, limited 

general use  

Extended time to 

treatment failure by 

25%  

Horwood & Noutahi 

(2020)  

Molecular design 

focused on chemical 

realism  

DRL model with 

design limitations  

Early stage with 

limited lab evaluation  

Generated realistic and 

chemically valid drug 

like molecules   

Madondo et al. (2025)  Personalized proton 

therapy replanning  

DRL with  

patient specific data  

Applied only to proton 

therapy, not yet 

clinically proven  

Improved treatment 

timing and reduced 

potential side effects  

Mathematical Model 

Team (2024)  

Adaptive therapy 

dosing decisions  

Biological tumor 

growth model 

combined with  

DRL  

Simulation based, lacks 

real world validation  

Merged biological 

modelling and RL for 

more personalized 

dosing  

Korshunova et al. 

(2022)  

De novo EGFR 

inhibitor design  

Generative neural 

networks with RL  

Based on computer 

models, not 

experimentally 

confirmed  

Create new compounds 

with strong predicted 

activity  

Liu et al. (2022)  

   

Personalized cancer 

treatment 

recommendations  

DRL  

(PPORank) using MDP  

Needs larger clinical 

validation  

Outperformed 

supervised learning for 

precision oncology  

Eckardt et al. (2021)  
RL in precision 

oncology  

Review of RL 

applications  

Limited use of real 

patient data  

Highlighted the role of 

RL in adaptive and 

patient specific therapy  

Pandiyan &  

Wang (2022)  

AI approaches for 

anticancer drug 

discovery  

Review including DRL 

for de Novo molecular 

design  

Mostly computational, 

minimal experimental 

testing  

Showed that DRL can 

explore chemical 

spaces efficiently  

Li et al. (2024)  Improving radiation 

therapy planning  
DRL for dosing  Focused on radiation 

therapy only  

Automated planning 

while keeping clinical 

accuracy  

Mashayekhi et al.  

(2024)  

Closed loop 

chemotherapy control  

Model free  

DRL  

Needs clinical 

validation  

Improved treatment 

timing and reduced 

toxicity in simulations  

Popova et al. (2018)  

De novo molecular 

design  

DRL (ReleaSE) 

Combining generative 

and predictive models  

Fully computational 

approach  

Generated molecules 

with strong activity and 

druglike properties  

Özçelik et al. (2025)  

Generative deep 

learning in drug design  

Graph transformer with 

RL  

Results limited to 

computer testing  

Explored large 

chemical space while 

keeping drug properties 

stable  

Wang et al. (2023)  

AI frameworks for 

oncology drug 

development  

Review of AI and DRL 

across the drug 

development process  

General review, few 

detailed case examples  

Showed DRL can 

improve drug activity 

and selectivity  

Albani et al. (2025)  

AI driven strategies in 

oncology drug  
Review including DRL  Theoretical focus, not 

tested experimentally  

Demonstrated higher 

efficiency and reduced 

workload in early 

research  

Svensson et al.  (2023)  Molecular generation 

using  

RL  

Multiple RL 

approaches for 

molecule design   

Based only on 

simulations, lacks lab 

testing  

Generated molecules 

meeting multiple 
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design  

criteria  

Ünlü et al. (2023)  Target specific 

molecule design  

Graph transformer 

GAN with RL  

Computational 

predictions only  

Designed high affinity 

molecules for protein 

targets  

Le et al. (2025)  

  

AI in cancer drug 

discovery  

Review of AI and DRL 

techniques  

Broad overview, 

limited experimental 

data  

Showed how AI can 

speed up identification 

of potential drugs  

Herráiz-Gil et al.  

(2025)  

  

AI assisted drug 

repurposing  

RL guided molecule 

generation  

Computational 

predictions, not yet 

validated  

Suggested new 

possible uses for 

existing drugs  

 

Although DRL has shown success in molecular design and 

adaptive therapy, few studies integrate patient-specific data 

such as mutation profiles or disease stage. This study addresses 

this gap by designing EGFR-targeting molecules that 

incorporate individual patient characteristics to improve 

binding affinity and drug-like properties. 

3. Methodology 
This section will present the methodology steps used in the 

study.  

 
Figure 1. Workflow of the EGFR targeted drug design 

methodology showing the steps from target identification 

and data collection to DRL model training and 

personalized docking. 

3.1 Target Identification 
The target selected for this study was EGFR, a cell surface 

protein known to play a critical role in cancer cell growth and 

survival. EGFR was chosen due to its importance in cancer 

progression and its involvement in drug resistance across 

multiple tumor types. Information about this target was 

obtained from the ChEMBL database, a well-established 

resource containing structured data on bioactive molecules. 

The target was identified using its specific ChEMBL ID: 

CHEMBL4523998. 

Figure 2. EGFR structure and signaling pathway involved 

in cancer cell growth and survival. 

3.2 Compound and Bioactivity Retrieval 
After selecting the target, a search was conducted in the 

ChEMBL database to collect compounds associated with 

EGFR. For each compound its SMILES representation and its 

binding strength data such as IC₅₀ were retrieved. IC₅₀ refers to 

the concentration of a compound required to inhibit 50% of the 

target activity, with lower values indicating stronger inhibition. 

These data formed as the foundation for analyzing compound 

target interactions and were used to train the molecule 

generation model. 

3.3 Compound Filtering 
At this stage, the extracted compounds were screened using 

predefined research-based standards. Compounds with weak 

binding affinity or limited experimental evidence were 

excluded. The section chose molecules demonstrating strong 

activity, suitable druglike properties, and reliable experimental 

validation, ensuring the dataset contained only potent and 

structurally appropriate compounds. 

Figure 3. Compound filtering workflow based on binding 

affinity and drug likeness requirements to select potent 

molecules for further analysis. 

3.4 Feature Extraction 
In this phase the SMILES strings of the selected compounds 

were converted into molecular descriptors using 

cheminformatics libraries such as RDKit. These descriptors are 

calculated features that represent chemical and structural 

characteristics including molecular weight, shape, and 

hydrogen bonding capacity. They served as numerical input 

features for model training. 

3.5 DRL Based Molecule Generation 
During this step, a DRL model was trained to design new 

molecules capable of effectively binding to EGFR. DRL 

combines reinforcement learning with deep neural networks to 

optimize decision making processes. The model used the 

molecular descriptors from the filtered compounds as input. It 
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received rewards for molecules predicted to have strong 

binding affinity, favorable druglike properties, and low toxicity 

as shown in the equation below. 

Reward=α×Binding Affinity+β×Drug Likeness − γ × Toxicity 

Equation 1. reward function in DRL assigning higher scores to 

molecules that bind EGFR strongly, have good druglike 

properties, and show low toxicity. 

Patient specific data such as mutation type and cancer stage 

were incorporated to enhance therapeutic relevance. Training 

was performed in python using RDKit and a DRL framework 

designed for molecular generation. Generated molecules were 

sorted as SMILES and their predicted pIC₅₀ values were 

calculated for prioritization. (pIC₅₀ is the negative logarithm of 

the IC₅₀ value where higher pIC₅₀ indicates greater inhibitory 

potency and makes data easier to compare.) 

 

 

 

 

Figure 4. A basic overview of DRL showing how the model 

learns by interacting with an environment and receiving 

rewards to improve its decisions. 

3.6 ADMET Optimization 
At this stage the generated molecules were evaluated for their 

ADMET profiles using predictive computational tools. The 

goal was to optimize drug likeness and minimize potential 

toxicity. When possible, patient specific data were incorporated 

to enhance the biological relevance of these predictions. 

3.7 Molecule Docking and Simulation 
In this final phase molecular docking simulations (e.g.  using 

AutoDock Vina) were followed by molecular dynamics to 

validate binding stability and behavior under physiological 

conditions. The predicted pIC₅₀ values were used to assess the 

relative potency and efficacy of the generated compounds., a 

scale representing the negative logarithm of IC₅₀ (half maximal 

inhibitory concentration) where higher pIC₅₀ values indicate 

more potent inhibition making data easier to interpret and 

compare. Lipiniski’s Rule of Five then evaluated the oral 

bioavailability of the compounds: optimal candidates typically 

have molecular weight ≤ 500 Da, ≤ 5 hydrogen bond donors, ≤ 

10 acceptors, and a log P ≤ 5. Finally, ADMET properties were 

predicted using computational tools to ensure the molecules 

exhibit favorable pharmacokinetics and safety profiles before 

experimental validation. 

4. RESULTS AND DISCUSSION 
The generated molecules demonstrated strong predicted 

binding affinity toward EGFR and exhibited favorable docking 

conformations as summarized in table 2. These results indicate 

that the designed compounds were able to effectively occupy 

the active binding pocket of the target receptor with stable 

orientations. 

Table 2. Binding affinity score and RMSD values of top 

candidate molecules. 

 Binding Affinity Score 

(kcal/mol) 

Ds form 

(RMSD) 

Best Mode 

(RMSD) 

1 -8.9 0.0 0.0 

2 -8.3 1.234 2.50 

3 -7.3 2.110 3.098 

 

Molecule 1 exhibited the highest binding affinity (-8.9 

kcal/mol) and an ideal RMSD of 0, indicating the most stable 

docking conformation. Molecule 2 and 3 also showed favorable 

binding scores (-8.3 kcal/mol) and (-7.3 kcal/mol) with slightly 

higher RMSD values that still reflect acceptable docking 

precision. 

Figure 5 compares the predicted binding affinity and RMSD 

values, Ds form and Best Mode for the three generated 

molecules. Molecule 1 shows the most favorable profile with 

the lowest binding affinity (-8.9 kcal/mol) and minimal RMSD, 

indicating a highly stable and well oriented binding orientation 

within the EGFR active site. Molecules 2 and 3 exhibit slightly 

weaker binding and higher RMSD confirms that stronger 

binding corresponds to more precise and consistent molecular 

positioning during docking. 

Figure 5. Binding affinity score and RMSD for a three 

generated molecule. 

We analyzed the SMILES and IC50 values of the molecules 

supporting their biological activity and potential effectiveness. 

Table 3. SMILES and IC50 values of the top candidates. 

 

To further refine the generated molecules, patient specific data 

was incorporated. This personalized optimization influenced 

predicted binding affinity, ADMET properties, and RMSD, 

ensuring that molecules were tailored for individual therapeutic 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.59, November 2025 

34 

contexts. 

 

Figure 6. Patient data was used for personalized drug 

optimization. 

Figure 7 present toxicity levels and Lipinski compliance for the 

top candidates confirming that the molecules meet drug 

likeness criteria well minimizing predicted toxicity. Figure 8 

shows the distribution of binding affinity relative to 

hepatotoxicity risk indicating that molecules with higher 

binding affinity generally maintain acceptable liver toxicity 

profiles. Figure 9 correlates binding affinity with patient age, 

treatment response, and disease stage illustrating the impact of 

personalization on predicted molecular efficacy. 

 

Figure 7. Toxicity levels Lipinski compliance. 

 

Figure 8. Binding affinity distribution by hepatotoxicity 

risk. 

 

 

 

 

 

 

 

 

Figure 9. Binding affinity vs. patient age by response history and disease stage.

5. CONCLUSION  
The findings of this study demonstrate that DRL can effectively 

generate novel molecules targeting EGFR achieving high 

predicted binding affinity and favorable biochemical profiles. 

The optimized compounds exhibited strong and stable binding 

orientations, met drug likeness criteria, and showed low 

predicted toxicity indicating their potential as promising leads 

for further cancer drug development. Incorporating patient 

specific information such as mutation type, HLA profile, and 

disease stage, enhanced molecular binding precision and 

emphasized the importance of personalization in therapeutic 

design. This research provides evidence that AI guided 

molecular generation can significantly accelerate early phase 

drug discovery and improve the specificity of cancer therapies. 

Future work should include lab experimental validation to test 

the ability of designed molecules to inhibit EGFR activity and 

to verify computational predictions. Expanding the model to 

include larger and more diverse datasets, additional cancer 

targets, and broader molecular descriptors would further 

strengthen its predictive capability. Additionally integrating 

multi objective optimization methods could enable 

simultaneous improvements of efficacy, safety, and synthesis 
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feasibility paving the way for fully automated patient tailored 

drug discovery. 
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