CFP last date
22 December 2025
Call for Paper
January Edition
IJCA solicits high quality original research papers for the upcoming January edition of the journal. The last date of research paper submission is 22 December 2025

Submit your paper
Know more
Random Articles
Reseach Article

Comparative Analysis of Visual Motion and Multimodal Strategies in Depression Recognition

by Hemangi Kacha, Drashti Bhikadiya, Abhijeetsinh Jadeja, Kamini Sharma, Jayashri Patil
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Number 58
Year of Publication: 2025
Authors: Hemangi Kacha, Drashti Bhikadiya, Abhijeetsinh Jadeja, Kamini Sharma, Jayashri Patil
10.5120/ijca2025925983

Hemangi Kacha, Drashti Bhikadiya, Abhijeetsinh Jadeja, Kamini Sharma, Jayashri Patil . Comparative Analysis of Visual Motion and Multimodal Strategies in Depression Recognition. International Journal of Computer Applications. 187, 58 ( Nov 2025), 58-64. DOI=10.5120/ijca2025925983

@article{ 10.5120/ijca2025925983,
author = { Hemangi Kacha, Drashti Bhikadiya, Abhijeetsinh Jadeja, Kamini Sharma, Jayashri Patil },
title = { Comparative Analysis of Visual Motion and Multimodal Strategies in Depression Recognition },
journal = { International Journal of Computer Applications },
issue_date = { Nov 2025 },
volume = { 187 },
number = { 58 },
month = { Nov },
year = { 2025 },
issn = { 0975-8887 },
pages = { 58-64 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume187/number58/comparative-analysis-of-visual-motion-and-multimodal-strategies-in-depression-recognition/ },
doi = { 10.5120/ijca2025925983 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-11-18T21:11:20.808599+05:30
%A Hemangi Kacha
%A Drashti Bhikadiya
%A Abhijeetsinh Jadeja
%A Kamini Sharma
%A Jayashri Patil
%T Comparative Analysis of Visual Motion and Multimodal Strategies in Depression Recognition
%J International Journal of Computer Applications
%@ 0975-8887
%V 187
%N 58
%P 58-64
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The use of computer vision and artificial intelligence (AI) technologies gives people the chance to study automated systems designed to evaluate visual and motion-based signals of depressive behavior. This review assesses the current state of research on facial landmark tracking, head pose estimation, and multimodal feature integration.Motion-based methodologies in the form of kineme modeling, rotation-invariant geometric frameworks, and interpretable motion dynamics explore relationships between motor behavior and depression. The use of visual techniques that combine facial landmarks, temporal geography, and attention-driven deep networks provides high prediction accuracy, although performance is still affected by lighting, pose, and culture. Multimodal systems that use combinations of facial, verbal, and textual streams of data add explanatory power to the diagnosis, but also issues surrounding explainability and temporal imbalance. Together, the studies highlight the diverse range of methodologies that are being employed to develop automated systems to identify depression in individuals.

References
  1. S. Gahalawat et al., “Explainable Depression Detection via Head Motion Patterns,” Proc. 25th ACM Int. Conf. Multimodal Interaction (ICMI), 2023, doi : 10.1145/3577190.3614141.
  2. H. Guo et al., “Automatic Depression Detection via Learning and Fusing Features from Visual Cues,” arXiv preprint arXiv:2203.11983, 2022.
  3. Y. Ding et al., “Depression Detection Using Time-Angle Features from Video,” Appl. Sci., vol. 13, no. 16, p. 9230, 2023, doi: 10.3390/app13169230.
  4. S. Gahalawat et al., “On the Validity of Head Motion Patterns as Generalisable Depression Biomarkers,” arXiv preprint arXiv:2502.04938, 2025.
  5. M. Kacem et al., “Detecting Depression Severity by Interpretable Representations of Motion Dynamics,” Proc. 13th IEEE Int. Conf. Automatic Face & Gesture Recognition (FG), pp. 739–745, 2018, doi: 10.1109/FG.2018.00116.
  6. H. Dibeklioglu, Z. Hammal, and J. F. Cohn, “Dynamic Multimodal Measurement of Depression Severity Using Deep Autoencoding,” IEEE J. Biomed. Health Inform., vol. 22, no. 2, pp. 525–536, 2018, doi: 10.1109/JBHI.2017.2676878.
  7. R. Wang et al., “FacialPulse: An Efficient RNN-based Depression Detection via Temporal Facial Landmarks,” Proc. ACM Multimedia (MM), pp. 311–320, 2024, doi: 10.1145/3664647.3681546.
  8. T. Zheng, Y. Wang, M. Wang, Y. Guan, P. Chen, and G. Mao, “Diagnosing and Tracking Depression Based on Eye Movement in Virtual Reality,” Front. Psychiatry, vol. 15, art. 1280935, 2024, doi: 10.3389/fpsyt.2024.1280935.
  9. M. R. Islam and S. W. Bae, “FacePsy: An Open-Source Affective Mobile Sensing System—Analyzing Facial Behavior and Head Gesture for Depression Detection in Naturalistic Settings,” Proc. ACM Hum. Comput. Interact. (PACMHCI), vol. 8, art. 260, 2024, doi: 10.1145/3676505.
  10. S. Hemrungrojn and P. Vateekul, “Explainable Depression Detection Based on Facial Expression Using LSTM on Attentional Intermediate Feature Fusion with Label Smoothing,” Sensors, vol. 23, no. 23, p. 9402, 2023, doi: 10.3390/s23239402.
  11. M. N. Dalili, I. S. Penton-Voak, C. J. Harmer, and M. R. Munafò, “Facial Emotion Recognition in Major Depressive Disorder: A Meta-Analysis,” Psychol. Med., vol. 45, no. 6, pp. 1135–1144, 2015, doi: 10.1017/S0033291715001104.
  12. G. Gilanie et al., “An Automated and Real time Approach of Depression Detection from Facial Micro-expressions,” Comput. Mater. Continua, 2022, 10.32604/cmc.2022.028229.
  13. A. S. Rajawat et al., “Fusion Fuzzy Logic and Deep Learning for Depression Detection Using Facial Expressions,” Procedia Comput. Sci., vol. 218, pp. 2795–2805, 2023, doi: 10.1016/j.procs.2023.01.251.
  14. N. Jin, R. Ye, and P. Li, “Diagnosis of Depression Based on Facial Multimodal Data,” Front. Psychiatry, vol. 16, art. 1508772, 2025, doi : 10.3389/fpsyt.2025.1508772.
  15. A. Kacem, Z. Hammal, M. Daoudi, and J. F. Cohn, “Detecting Depression Severity by Interpretable Representations of Motion Dynamics,” Proc. 13th IEEE Int. Conf. Automatic Face & Gesture Recognition (FG), pp. 739–745, 2018, doi: 10.1109/FG.2018.00116.
  16. H. Dibeklioglu, Z. Hammal, and J. F. Cohn, “Dynamic Multimodal Measurement of Depression Severity Using Deep Autoencoding,” IEEE J. Biomed. Health Inform., vol. 22, no. 2, pp. 525–536, Mar. 2018, doi: 10.1109/JBHI.2017.2676878.
  17. Z. Zhu, J. Liu, L. Zhang, and Y. Zhao, “Facial Depression Recognition via Hybrid Multi Head Cross Attention,” Front. Psychol., vol. 14, art. 1211598, 2023,doi:10.3389/fpsyg.2023.121159.
  18. M. Gahalawat et al., “On the Validity of Head Motion Patterns as Generalisable Depression Biomarkers,” arXiv preprint arXiv:2505.23427, 2025.
  19. Patil, J., Patil, V., Prajapati, K., Patel, D., Trivedi, S., & Patel, R., “Enhanced Depression Detection on Social Media Using Advanced Machine Learning and Linguistic Analysis Techniques”, In International Conference on Intelligent Computing and Communication (pp. 263-275), 2024, Singapore: Springer Nature Singapore.
  20. Verma, S., Patil, J. A., & Tamhankar, I., “Integrating Natural Language Processing with CGANs to Generate Customized, Realistic Traffic Scenarios for Autonomous Vehicle Training”, In 2024 IEEE International Conference on Smart Power Control and Renewable Energy (ICSPCRE) (pp. 1-5), 2024, IEEE.
  21. Patil, M. J. A., & Godhwani, M. P. B., “Review of Name Entity Recognition in Marathi Language”, IJSART, 2(6), 2016.
  22. Patil, J., & Sheth, J., “Deep Learning and Machine Learning Approaches for the Classification of Personality Traits. In Rising Threats in Expert Applications and Solutions”, Proceedings of FICR-TEAS 2022 (pp. 139-146), 2022, Singapore: Springer Nature Singapore.
  23. Patil, J., & Sheth, J., Comparative study of data sources, features, and approaches for automatic personality classification from text. Int. J. Comput. Appl, 174, 0975-8887, 2021.
  24. Patil, J., & Sheth, J., “Data Preparation and Quality Challenges for the Personality Recognition in Indian Languages using Machine Learning and Deep Learning Approaches. Journal of IoT in Social, Mobile, Analytics, and Cloud, 4(1), 33-40, 2022.
  25. Patil, J., & Sharma, K., Personality Recognition from Text in Indian Languages : Challenges, Progress, and Future Directions”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 2456-3307, Vol. 11, no. 5, pp 398-401, 2025, doi:https://doi.org/10.32628/CSEIT251117136.
Index Terms

Computer Science
Information Sciences

Keywords

Depression Depression Detection Deep Learning Emotion Facial Detection Motion-Visual-Multimodal Approaches