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ABSTRACT

The use of computer vision and artificial intelligence (AI)
technologies gives people the chance to study automated
systems designed to evaluate visual and motion-based signals
of depressive behavior. This review assesses the current state
of research on facial landmark tracking, head pose estimation,
and multimodal feature integration.Motion-based
methodologies in the form of kineme modeling, rotation-
invariant geometric frameworks, and interpretable motion
dynamics explore relationships between motor behavior and
depression. The use of visual techniques that combine facial
landmarks, temporal geography, and attention-driven deep
networks provides high prediction accuracy, although
performance is still affected by lighting, pose, and culture.
Multimodal systems that use combinations of facial, verbal,
and textual streams of data add explanatory power to the
diagnosis, but also issues surrounding explainability and
temporal imbalance. Together, the studies highlight the diverse
range of methodologies that are being employed to develop
automated systems to identify depression in individuals.
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1. INTRODUCTION

Depression is increasingly relevant to modern healthcare given
its immense impact on people globally. The methods for
diagnosing depression, like interviews or self-assessments, are
inefficient and heavily reliant on the subjective opinion of the
evaluator, which can cause delays in the diagnosis. Computer
vision and automation brought forth by artificial intelligence
(AI) can fill the gap by providing scalable and objective
methods for identifying signs of depression. It detects and
describes patterns in the psychomotor and behavioral
expressions people display. Particular attention is paid to faces,
gazes, head movements, and other gestures as these capture
some of the non verbal signs that are most often overlooked in
verbal or auditory interactions. In this review, I focus on the
most relevant literature on psychomotor techniques that are
movement-based, vision-based, and those that offer a
combination of both, to explain integrated approaches using
explainable motion features, dynamics of facial landmarks, and
integrated multimodal approaches across major depression
datasets, AVEC, DAIC-WOZ, BlackDog, and E-DAIC.
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Fig 1: Proportion of Dataset Usage Across 20 Selected
Research Papers

2. COMPARATIVE ANALYSIS OF
METHODOLOGIES

2.1 Motion-Based Methodologies

A Motion-based approaches powerfully capture psychomotor
retardation as a core symptom of depression. These methods
examine head pose, micro-movements, eye modulations, and
gaze dynamics temporally.

2.1.1 Kineme Models

Ist coined the term ‘kinemes’ as head motion biomarkers
amenable for depression detection. Their psychomotor
approach is based on clinically observed and poorly computed
symptoms of depression within motion, irregular or reduced
head movement [1]. The study did not utilize opaque deep
learning embeddings, rather constructed meaningful and
explainable features. It used the BlackDog and AVEC2013
datasets, extracting RNN modeled head movement trajectories.
These were segmented and kinematically organized within the
RNNs. Regular micro-movements of movement, rather than
the static typical visual features were captured. The authors
express, “kinemes provide interpretable features that can be
directly linked to psychomotor symptoms of depression” [1].

The model visual-only approaches the baseline with F1 0.72
Precision 0.70 Recall 0.75 Motion and motion explainability
class. Still, the model performed and lacked head movements
while the video was played. Reliance on video motion detection
data was clearly demonstrated. Nonetheless, the framework
laid the groundwork on resolving. Designing Al clinically
declared system for depression detection [1].
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2.1.2 Feature Fusion Cues

This introduced a dual-feature framework that combines
Temporal Dilated Convolution Networks (TDCN) with
Feature-Wise Attention (FWA) to analyze visual motion cues
for detecting depression [2]. The key motivation was to
integrate facial landmark dynamics with head pose trajectories,
thereby capturing both subtle expression changes and broader
head orientation shifts.

Their model was tested on the DAIC-WOZ dataset, a widely
used benchmark for multimodal depression detection. In this
method, TDCN processed facial landmarks to analyze temporal
variation across different scales, while FWA was applied to
head pose features to classify the most relevant signals. This
combination enabled the model to assess facial or motion
features that indicated depression most strongly.

On DAIC-WOZ, this framework achieved excellent results and
surpassed multiple baselines. The attention fused model, in
particular, increased F1 score by over 5% relative to single-
feature approaches. The attention mechanism, while accurate,
highlighted interpretability features, identifying motion and
facial movements such as nodding as substantial predictors.
The approach, however, was highly data-centric, needing large
annotated datasets to train reliable systems [2].

2.1.3 Time-Angle Features

In a similar fashion, motion-centered approach used rotation
invariant time angle features derived from facial landmarks[3].
Their thinking was that representing facial motion as geometric
angular changes, as opposed to pixel data, would yield stronger
features across different poses and lighting conditions.

Testing demonstrated that their approach achieved both
accuracy and computational efficiency that surpassed a number
of traditional deep learning models. Moreover, real-time
analytics capability due to low computational cost of GhostNet
design permitted practical use for telehealth. On the downside,
the performance of angular dynamics highly correlates with the
accuracy of landmark extraction, which could be detrimental to
the system due to the inherent problems of landmark detection.
In any case, the study opened interesting directions for research
and development of real-time detection systems for depression

[3].

2.1.4 Cross-Cultural Kinemes

The expandability of the kineme framework with German,
Australian and American samples along three datasets of
cultural variety [4]. The goal was to assess the applicability of
motion- based biomarkers across populations with very
different datasets to alleviate depression detection dataset bias.

Assessment of classifier performance by RNN and CNN
models probed performance consistency. The authors quoted
“kineme-based features generalize better than raw head motion
and other visual cues” to illustrate the generality of their claims

[4].

The datasets indicated that kineme-based modeling
comparative to other motion visual models and baselines was
superior across all datasets. These facts indicate the motion
biomarkers are cross culturally robust, and thus are strong
candidates for clinical deployment. However, the cultural
nuances in nonverbal behavior remain the main obstacles,
indicating the best performance is likely found in hybrid
approaches that use both universal and culture specific features

[4].
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2.1.5 Interpretable Motion Dynamics

From a biomechanical perspective, it focused on the study of
depression through the use of Lie Algebras to represent the
facial dynamics of landmarks and head rotation along with their
spatial trajectories [5]. The aim of the research was to
synthesize clinically relevant features that are both
discriminative and clinically relevant through the use of
Gaussian Mixture Models and Fisher vectors to encode
complex movement trajectories.

Evidently stepwise systems with motion-dynamic features
distinguished and classified levels of depression with high
accuracy. Thanks to the interpretable Lie Algebra encodings,
clinicians were able to follow the logic of the classification. The
approach, albeit still computationally expensive, works as a
demonstration of the clinically informed mental health Al
modeling rigorously predicted as low hanging fruit.

2.1.6 Autoencoding Motion

While the works of multimodal, they still focused on
representations of the face and head motion, and thus are
tangentially relevant to this line of research. The study
employed deep autoencoding networks to concurrently model
facial micromovements, head motions, and voice features. The
prediction was that motion signals integrated with speech
dynamics provided the most stable indicators of the severity of
depression.

Depression features confirmed head motion and facial motion
features and single modality models were outperformed by
voice systems. However, the limited reliance on large
multimodal datasets kept scalability intact. This work
supported motion cues as dominant predictors of depression
and reinforced the motion cues within multimodal frameworks
fusion depression models.

2.1.7 FacialPulse RNN

Along the RNN based architecture to FacialPulse, focused on
further speed enhancement and the processing of sequences of
facial landmark traces [7]. Capturing the timing dynamics of
facial motion rather than the static appearance of features is the
reasoning for the shift focus from most conventional visual
models.

The model evaluation was on AVEC2014 and the MMDA
datasets, designed to capture the optical flow of face regions for
long term 3D motion of facial landmark intervals. Fast
computation and capture of the dynamic features was achieved
with the design that the authors reported, stating that
FacialPulse was 21% lower compared to the recognized
baseline on the MAE metric, and served double the recognized
speed [7].

These findings further validated the accuracy and efficiency of
FacialPulse, positioning it as a robust candidate for real-time
monitoring of patients with depression during telehealth
appointments. FacialPulse still requires improved landmark
identification to resolve issues of extreme head motion, poor
tracking, and video noise. Ultimately, the model is a good
enough in scalable temporal motion depression detection
systems [7].

2.1.8 FacePsy Mobile

They studied a novel eye-tracking motion system in virtual
reality (vr). The study assumed the depression associated
cognitive and attentional deficits could be. captured in
oculomotor behavior of screen/fixations and eye saccades.
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Subjects used virtual reality headsets and were subsequently
tracked as they moved their heads using an algorithm to
determine gaze. By tracking head movements, parameters of
fixation, saccade, and spatial scanning were taught to machines
like XGboost and MLP classifiers. The system got very good
results, with MLP classifiers hitting an F1 score of 0.9. 92 and
strong correlating with PHQ-9 scores. This suggests VR might
be able to track depression and be used in motion based
depression tracking systems. This also suggests depression
motion tracking systems might need to use VR sensors and
centers. [8]

2.2 Visual Methodologies (Facial

Landmarks & Expressions)

Visual cue-based methods depend on recognizing facial
emotions and action units (AUs) and facial dynamics
corresponding to emotional and affective states.

2.2.1 FacePsy Mobile

Islam and Bae designed and developed FacePsy, a system for
real-word depression detection via smartphone cameras and
mobile devices. Rather than lab settings around depression
detection, FacePsy has a principal focus on kinetic authenticity,
recording facial expression, eye focus, and head movement in
unconstricted settings. Its most major breakthrough revolution
is mobile adaptability, which changes the paradigm of
depression detection and allows for continuous unmonitored
collection of data.

The system is able to work aboard mobile devices because it
uses facial behavior metrics of micro expressions, action units
(AUs) plus blink frequency, and light cognitive algorithms.
These algorithms allow mobile devices to perform real time
data processing without incurring computational burdens. Also,
the FacePsy application increases the expression and gesture
based signals of the mobile device. This is for the unmet need
of devices in the assessment of mental health.

The evaluation carried out showed great accuracy in
distinguishing the symptoms of depression from normal facial
movement in the absence of specific F1, recall, or precision
metrics. This system, is easily portable and has close to 100%
accuracy in real-world depression detection. FacePsy is still
limited to privacy challenges in the field and the camera and
light framing placement. Regardless, FacePsy is still very
useful regarding the new mobile based approach to depression
detection [9].

2.2.2 FacialPulse Landmarks

This variant of FacialPulse also dealt with layered motion in
the presence of spatio-temporal visual stimuli, in particular the
trajectory of facial landmarks [10]. These researchers
developed RNN centered frameworks focusing on moving
primary landmarks to overcome the conventional approach of
working with still facial images. Such models aim to capture
the elusive temporal features of depression facial muscle
movements.

The approach consisted of a succession of 68 facial landmarks
derived from videos within the AVEC2014 dataset. These
sequences were fed into a RNN configured to attend to long
intervals of time. The authors point out that capturing the
duration and rhythm increases the ability to distinguish target
depression users in the dataset.

FacialPulse, in the case of RNN baseline models of expression
analysis, obtained a significant increase in recognition accuracy
and an increase in processing speed. Also, the architecture is
compact enough to enable almost real-time processing speed
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which is a plus for telemedicine systems.This study also
recognizes and appreciates sensitivity to landmark extraction
inaccuracies, which is commonplace in low illuminated and
occluded cases.

2.2.3 LSTM with Attention

This study employed deep learning techniques with LSTM
layers and attention mechanisms for detecting depression from
facial expression datasets [11]. The authors emphasize
depression's core relevance to facial dynamics but highlight
that the models must also offer transparency to be clinically
relevant. Hence, the coherence fusions layer feature was added
to the structures to increase their interpretability.

The methods used to derive these facial action units and spatio-
temporal expression features were the stacked LSTMs with
attention mechanisms which then multiplied the specific
elements in the output that were deemed important. The model
was previously evaluated on benchmark datasets consisting of
neutral and emotional expression data. The authors quote that
“attention weighting enabled the model to emphasize clinically
relevant features, such as less smiling or more expressive face
breathing” [11].

The system was also found to offer competitive recognition
rates and the accuracy and F1 scores were found to exceed the
benchmark baseline CNNs. The clinical nature of the system
was more attractive because of its interpretability and facility
to feature which features of the data contributed more to the
predictions. The main shortcomings were the need of high
quality facial videos to be used in the system and also the
diminished performance in natural and uncontrolled
conditions. Still, it showed the first signs of interpretability in
the facial-expression based depression detection systems [11].

2.2.4 Emotion Deficit Meta

Unlike the studies on single models, this meta-analysis focused
on the accumulation of evidence that individuals with Major
Depressive Disorder (MDD) have a considerable and
unchanging deficit in the recognition of facial emotional
expressions [12]. People suffering from depression
demonstrated a tendency to struggle the most with recognition
of positive emotions, especially happiness, while negative
emotions were recognized with greater accuracy.

The depression-emotion recognition deficit linkage becomes
stronger with each subsequent study; meta analyses, as the one
used here, provide the cross study methodology to assess bias
emotion processing model phenomena. Depression bias has
been shown to profoundly impact the way faces are perceived,
which allows such bias to be modeled. In this way the
depression context acts to provide a cognitive basis for the
negative bias in processing emotions, thus the model of the
depression profoundly bias outlook serves to prop the
computational basic for the model depression.

The lack of positive emotions recognition fully justifies the
absence of positive emotions in produced systems concerning
sadness or the over accentuated, stereotypical emotions of
sadness. There is a ‘clinical bottom line’ that such systems
ought to be clinically positioned, exercising greater adherence
to the psychiatric foundations of the issue to the evidence
posed. [12].

2.2.5 Micro-Expression Real-Time

They developed a real-time depression detection framework
leveraging facial micro expressions [13]. Those micro-
expressions of emotion tend to escape one’s attention as they
are the instantaneous, reflexive movements of the face,
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underlying sadness, or depression, that appear to be more
reliable than the voluntary, exaggerated facial poses one is
trained to use. There is an effort to move beyond the use of
photographs to an engagement with the very rapid and subtle to
detect systems.

The system utilized facial action coding and micro expression
recognition algorithms along with high temporal dynamics to
process high-frame-rate videos. Features were then classified
using deep neural networks streamlined for efficient
processing. The authors stayed focused on the balance between
real-time processing and speed remarking that the framework
was designed for active surveillance situations.

The research showed high levels of accuracy in detection,
especially in detecting mild and moderate depressive
symptoms. However, the actual deployment was difficult to
achieve, as micro expressions are difficult to capture in free
ranging settings. Nonetheless, the model demonstrated micro-
expression recognition could be used as a depression biomarker
and proved the concept necessary for field application. [13].

2.2.6 Fuzzy-CNN Hybrid

This integrates the fuzzy logic systems with deep learning
CNNs to extract and classify depressive features from facial
expressions. This line of reasoning coupled with deep learning
sought to sidestep the boundary rigid classification problems of
fuzzy systems that is emblematic of emotion expression.

The system architecture is structured such that facial landmarks
and expression features are interleaved throughout shallow and
deep structures in the CNN. This forms layered hierarchies of
features that classify emotion into upper and lower depressions
for easy interpretation and smoother processing. This interplay
in the model sought to balance the emotional and cognitive
aspects of the system.

The results indicate that the hybrid model CNN - fuzzy systems
had higher F1 scores and accuracy than the CNN - only models,
particularly in cases that were difficult to express. The best part
about the model is that it was easy to understand, but also meant
that the model was heavily reliant on the tuned rules for the
fuzzy sets, which was unlikely to be transferable to other
datasets. It demonstrates the value of combining deep learning
and symbolic Al [14].

2.3 Multimodal Methodologies.

Multimodal approaches seek to capture and leverage visual,
motion, and audio attributes for complementary information
retrieval. Systems designed with multimodal information
analytics and retrieval capabilities accomplish these tasks, and
subsequently, they also need to address a plethora of
complexities, including but not restricted to interpretability.

2.3.1 PHQ-8 Fusion

Team members have tie microphones and video monitors to
build a Brown-and-Person model estimating PHQ-8 scores and
gauging depression from facial audio-visual feeds.

They worked under the idea that expressions on the face in a
video alone could be used as unreliable information to make
and that it was better used in conjunction with the information
from the speaker's voice from the video in addition to the verbal
components.

The model had a computer with spatiotemporal frame strengths
with a composition of other computers surrounded with long
short term memories. They extracted visual components from
the face with sets of markers to see facial information and then
bought sound from the mic figures that controlled pitch and
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speech over thythm and timing. The computer with the Graph
Convolution performed facial area spatial relations and the
computer with the other graphics performed on the other side
of the computer to controlling timing. When looking at the E-
DAIC dataset, it was apparent that the depressed model had
more sleeping and gained better PHQ-8 scores than people
relying on one of the systems alone and that using the Brown
model improved score estimated mean error. The investigation
showed that multimodal fusion is in line with how clinicians
detect depression: via listening and observing. Its drawback
was computational cost and sensitivity to absence of modality
data [15].

2.3.2 Lie Algebra Motion

Designed an interpretable multimodal system for depression
detection using facial landmark dynamics and head motion
features. Most Depression Detection systems usually focus on
interpretability, to assure that the outcomes align with the
clinically recognized psychomotor symptoms patients exhibit.

Along these phases, the methods which attempt to identify the
psycho-motor diagnoses have largely been the ones which
describe facial landmark trajectories and head rotations using
Lie Algebra Frameworks, and then encode them using
Gaussian Mixture Models (GMMs) and Fisher Vectors. the
features being tracked permit motion and irregular dynamics to
be interpretable as passive behavioral indicators of depression.

The models were accurate to the extent that the interpretable
features accurately predicted the severity of depression.
indicators of motion instead of vague guesses. This was an
attempt at defining explainable multimodal Al [16].

2.3.3 Autoencoding Fusion

They created and proposed a unique approach aimed at
combining the use of facial, head, and voice analysis in
assessing depression severity [17]. Their assumption was that
working on a micro level of different ways of expressing
depressive behavior and combining them would result in a
better representation of depressive behavior.

The framework incorporated the use of autoencoders which
learned specific features specific for each modality, which then
were compressed into a singular representation. The resulting
representation was used for severity estimation. The facial
features were expressive, the head movements expressive of
psychomotor retardation, and the voice occupied the features of
expressive tone.

Results showed that feature fusion greatly exceeded the
performance of individual features, particularly head + face to
audio alone. The paper maintained that weak predictors across
multiple modalities, when combined, can produce a stronger
classifier. The difficulties mentioned included lack of feature
and component fusion, particularly audio and the overall
background noise. Yet, the approach demonstrated the value of
multi deep learning for depression assessment [17].

2.3.4 Cross-Attention Fusion.

This study outlines a hybrid multi-head cross-attention network
for recognizing depression across modalities [18]. Their work
argues that depression is multi-faceted and that facial
appearance provides coarse contextual cues, while facial
motion offers fine-grained behavioral information. Similar to
prior research that utilized linguistic and behavioral features for
depression analysis on social media [19], this model integrates
complementary cues to enhance recognition performance. The
architecture employed feature extraction using pre-trained
CNNs (ResNet-50, GoogleNet) and incorporated recurrent
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layers to encode temporal dynamics. Cross-attention
mechanisms were used to effectively merge appearance and
motion features from multiple modalities, aligning with
multimodal fusion principles observed in other NLP-driven
affective computing frameworks [19]-[20].

Performance improvements in accuracy and recall on the
AVEC dataset significantly surpassed unimodal baselines. The
model’s main strength was its ability to dynamically balance
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motion and static facial cues. However, like other studies in
personality and behavioral analysis [22]-[25], it faced
limitations related to computational complexity and reliance on
large-scale annotated datasets. This work reinforces the
growing importance of attention-based multimodal fusion
approaches in depression detection, echoing insights reported
in earlier affective computing and mental-health analysis
research [19], [23].

« Interpretable motion-dynamics via GMM + Fisher vectors —+ psychomotor

« Multimodal (facial + head + vocal) with deep autoencoders — better severity
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Fig 2: Timeline of Advances in Motion, Visual and Multimodal depression detection.
Table 1 : Comparision Analysis of Motion, Visual Cues and Multimodal Approches
Aspect Top In-between Bottom

Head motion patterns,

Facial landmarks, AUs,
micro/macro expressions, temporal

Combination of facial, vocal,

Input Features kinemes, geometric dynamics textual, or physiological
angles, movement onal
velocity/acceleration sighals
RNNs, Lie Algebra
’ . GCNs, LSTMs, GNNs,
models, GMMs, Fisher CNNs, 3D  CNN, ° o

Model Architectures

vectors,

interpretable motion
encoders

LSTMs, transformers, MIL,
attention-based fusion

autoencoders, dual-stream
CNNss, cross-modal
attention

62




International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.58, November 2025

High interpretability
(link to psychomotor
symptoms), lower

Rich

link to emotion recognition deficits,
effective with highquality video

visual  detail, direct Captures complementary cues
across modalities, achieves

highest accuracy, clinically

Strengths . more reliable
computational cost,
generalizable across
datasets
Sensitive to head Strongly affected by lighting, High computational cost,
tracking errors, limited occlusions, cultural bias in synchronization challenges,
o expressive . expressions, higher data needs data. imbalance (missing
Limitations range,weaker with modalities), harder to deploy
static/lowmotion in real-world
subjects

Explainable,lightweight
clinical screening,

Best Use-Case crosscultural robustness

Controlled lab settings, emotion-
driven tasks, video interviews

Telehealth, in-depth
diagnosis, severity prediction,
robust but
resource-intensive

3. CONCLUSION

This review examined approaches for detecting depression:
motion-based, visual, and multimodal methods. Motion
techniques provide interpretability. However, they encounter
problems when individuals do not move much. Systems that
rely on visual cues are quite successful, but their analyses are
highly influenced by video quality and culture. Despite needing
a lot of resources, multimodal systems provide the greatest
diagnostic accuracy. Future research should target explainable
multimodal models that incorporate principles of cross-cultural
validation and are designed for scalability to enable efficient
depression screening in clinic-suitable environments.
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