CFP last date
20 June 2025
Reseach Article

Exploring Fuzzy Filters and Ideals in BG-Algebras: A Comprehensive Framework for Maximal Extensions and Algebraic Generalizations

by Faisal Mehmood, Heng Liu
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Number 5
Year of Publication: 2025
Authors: Faisal Mehmood, Heng Liu
10.5120/ijca2025924916

Faisal Mehmood, Heng Liu . Exploring Fuzzy Filters and Ideals in BG-Algebras: A Comprehensive Framework for Maximal Extensions and Algebraic Generalizations. International Journal of Computer Applications. 187, 5 ( May 2025), 1-17. DOI=10.5120/ijca2025924916

@article{ 10.5120/ijca2025924916,
author = { Faisal Mehmood, Heng Liu },
title = { Exploring Fuzzy Filters and Ideals in BG-Algebras: A Comprehensive Framework for Maximal Extensions and Algebraic Generalizations },
journal = { International Journal of Computer Applications },
issue_date = { May 2025 },
volume = { 187 },
number = { 5 },
month = { May },
year = { 2025 },
issn = { 0975-8887 },
pages = { 1-17 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume187/number5/exploring-fuzzy-filters-and-ideals-in-bg-algebras-a-comprehensive-framework-for-maximal-extensions-and-algebraic-generalizations/ },
doi = { 10.5120/ijca2025924916 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-05-29T00:02:58+05:30
%A Faisal Mehmood
%A Heng Liu
%T Exploring Fuzzy Filters and Ideals in BG-Algebras: A Comprehensive Framework for Maximal Extensions and Algebraic Generalizations
%J International Journal of Computer Applications
%@ 0975-8887
%V 187
%N 5
%P 1-17
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The work incorporates fuzzy set theory in the context of BGalgebras, defining fuzzy filters and ideals which allow the preservation of operations of BG-algebras despite partial membership. This consolidation is vital to ensure that classical algebraic fundamentals remain relevant even in the context of fuzziness. Furthermore, the work provides such a theory for the more advanced maximal fuzzy filters, whose closure properties are essential in the broader design of the theory with Zorn’s Lemma. It also investigates mapping properties and provides numerous examples of fuzzy filters, ideals and complemented fuzzy filters, symmetric and bounded fuzzy filters and ideals. The paper also introduces fuzzy prime filters that are a tool for re-evaluating the algebraic behavior of BG-algebras. The results provided by this paper gives a complete framework to understand all BG-algebras as well as a generalization of them in fuzzy algebraic systems. This theoretical framework not only contributes to the field of algebra, but may also serve as a precursor for applications in domains like fuzzy logic, decision-making, and computing systems. The further investigation of closure properties, maximal extensions and structural relationships may pave an interesting path for both theory and practice.

References
  1. B. Ahmad. Fuzzy bci-algebras. Journal of Fuzzy Mathematics, 1(2):445–452, 1993.
  2. S. S. Ahn and H. D. Lee. Fuzzy subalgebras of bgalgebras. Communications of the Korean Mathematical Society, 19(2):243–251, 2004.
  3. M. Akram. m-polar fuzzy sets and their applications in bck/bci-algebras. Journal of Intelligent and Fuzzy Systems, 36(5):5303–5313, 2019.
  4. A. Al-Masarwah. Bipolar fuzzy subalgebras and their extensions. Fuzzy Information and Engineering, 12(4):398–411, 2020.
  5. S. R. Barbhuiya. (α,β)-doubt fuzzy ideals of bg-algebras. International Journal of Advances in Mathematics, 2018(1):83– 94, 2018.
  6. D. K. Basnet and L. B. Singh. On (∈,∈ ∨q)-fuzzy ideals in bg-algebras. Journal of Fuzzy Mathematics, 30(2):95–108, 2022.
  7. G. B¨uy¨uk¨ozkan and G. C¸ ifc¸i. A novel hybrid mcdm approach based on fuzzy dematel, fuzzy anp, and fuzzy topsis to evaluate green suppliers. Expert Systems with Applications, 39(3):3000–3011, 2012.
  8. J. Castell´o-Sirvent, L. Higuera, J. J. Garc´ıa, J. L. G. S´anchez, and A. D. Abreu. Bibliometric analysis of fuzzy analytic hierarchy process (fahp) and its applications in decision making. Mathematics, 10(6):1748, 2022.
  9. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 2nd edition, 2002.
  10. J. A. Goguen. L-fuzzy sets. Journal of Mathematical Analysis and Applications, 18(1):145–174, 1967.
  11. S. M. Hong and Y. B. Jun. Anti fuzzy ideals in bck-algebras. Kyungpook Math. J., 38:145–150, 1998.
  12. Q. P. Hu and X. Li. On bch-algebras. Math. Seminar Notes, 11:313–320, 1983.
  13. Q. P. Hu and X. Li. On proper bch-algebras. Math. Japonica, 30:659–661, 1985.
  14. F. Y. Huang. Another definition of fuzzy bci-algebras – in chinese. In Selected Papers on BCK and BCI-Algebras (P. R. China), volume 1, pages 91–92. 1992.
  15. K. Is´eki. On bci-algebras. Math. Seminar Notes, 8:125–130, 1980.
  16. K. Is´eki and S. Tanaka. An introduction to the theory of bckalgebras. Math. Japonica, 23:1–26, 1978.
  17. Y. B. Jun. Closed fuzzy ideals in bci-algebras. Mathematica Japonica, 38:401–405, 1993.
  18. Y. B. Jun, E. H. Roh, and H. S. Kim. On bh-algebras. Sci. Math. Japonica Online, 1:347–354, 1998.
  19. C. Kahraman, U. Cebeci, and D. Ruan. Multi-attribute comparison of catering service companies using fuzzy ahp: The case of turkey. International Journal of Production Economics, 87(2):171–184, 2004.
  20. Kamaludin, S. Gemawati, and Kartini. (l, r)-derivations and left derivations in bg-algebras. Advances in Fuzzy Mathematics, 31(1):67–81, 2023.
  21. C. B. Kim and H. S. Kim. On bg-algebras. Demonstr. Math., 3, 2008.
  22. W. J. Liu. Fuzzy invariant subgroups and fuzzy ideals. Fuzzy Sets and Systems, 8(2):133–139, 1982.
  23. W. J. Liu. Operations on fuzzy ideals. Fuzzy Sets and Systems, 11(1-3):31–41, 1983.
  24. D. S. Malik and J. N. Mordeson. Fuzzy direct sums of fuzzy rings. Fuzzy Sets and Systems, 45(1):83–91, 1992.
  25. J. M. Mendel. Uncertain Rule-Based Fuzzy Systems: Introduction and New Directions. Prentice Hall, Upper Saddle River, NJ, 2001.
  26. J. Meng and X.-E. Guo. On fuzzy ideals in bck/bci-algebras. Fuzzy Sets and Systems, 149:509–525, 2005.
  27. J. Meng and X.-E. Guo. On the algebraic structures of fuzzy subalgebras in bg-algebras. Mathematical Fuzzy Structures, 12(3):195–212, 2024.
  28. J. Meng and Y. B. Jun. BCK-algebras. Kyung Moon Sa. Co., Seoul, 1994.
  29. R. Muthuraj, M. Sridharan, and P. M. Sitharselvam. Fuzzy bg-ideals in bg-algebra. International Journal of Computer Applications, 2(1):26–30, 2010.
  30. A. Naimpally and F. Neubrander. Fuzzy Topology and its Applications. Springer, Cham, 2017.
  31. J. Neggers and H. S. Kim. On d-algebras. Math. Slovaca, 49:19–26, 1999.
  32. J. Neggers and H. S. Kim. On b-algebras. Mat. Vesnik, 54:21– 29, 2002.
  33. J. Reig-Mullor, D. Pla-Santamaria, and A. Garcia-Bernabeu. Extended fuzzy analytic hierarchy process (e-fahp): A general approach. Mathematics, 8(11):2014, 2020.
  34. A. Rosenfeld. Fuzzy groups. Journal of Mathematical Analysis and Applications, 35(3):512–517, 1971.
  35. T. L. Saaty. Decision Making with Dependence and Feedback: The Analytic Network Process. RWS Publications, Pittsburgh, PA, 1996.
  36. T. Senapati and M. Pal. Fuzzy dot structures in b- and bgalgebras. Fuzzy Algebraic Structures, 10(3):214–229, 2021.
  37. S. R. Shi. Measures of fuzzy subgroups. Proyecciones Journal of Mathematics, 29(1):41–48, 2010.
  38. O. G. Xi. Fuzzy bck-algebras. Mathematica Japonica, 36:935–942, 1991.
  39. R. R. Yager. A procedure for ordering fuzzy subsets of the unit interval. Information Sciences, 24(2):143–161, 1981.
  40. R. R. Yager and D. P. Filev. Essentials of Fuzzy Modeling and Control. Wiley-Interscience, New York, 1994.
  41. L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338– 353, 1965.
  42. L. A. Zadeh. Fuzzy sets as the basis for a theory of possibility. Fuzzy Sets and Systems, 1(1):3–28, 1978.
Index Terms

Computer Science
Information Sciences

Keywords

BG-algebra fuzzy filters fuzzy ideals maximal fuzzy filters fuzzy prime filters