
International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.5, May 2025

Exploring Fuzzy Filters and Ideals in BG-Algebras: A
Comprehensive Framework for Maximal Extensions

and Algebraic Generalizations

Faisal Mehmood
School of Mathematical Sciences

and Center for Applied Mathematics of Guangxi,
Guangxi Minzu University,

Nanning 530006, People’s Republic of China.

Heng Liu
School of Mathematical Sciences

and Center for Applied Mathematics of Guangxi,
Guangxi Minzu University,

Nanning 530006, People’s Republic of China.

ABSTRACT
The work incorporates fuzzy set theory in the context of BG-
algebras, defining fuzzy filters and ideals which allow the preser-
vation of operations of BG-algebras despite partial membership.
This consolidation is vital to ensure that classical algebraic fun-
damentals remain relevant even in the context of fuzziness. Fur-
thermore, the work provides such a theory for the more advanced
maximal fuzzy filters, whose closure properties are essential in
the broader design of the theory with Zorn’s Lemma. It also in-
vestigates mapping properties and provides numerous examples of
fuzzy filters, ideals and complemented fuzzy filters, symmetric and
bounded fuzzy filters and ideals. The paper also introduces fuzzy
prime filters that are a tool for re-evaluating the algebraic behav-
ior of BG-algebras. The results provided by this paper gives a
complete framework to understand all BG-algebras as well as a
generalization of them in fuzzy algebraic systems. This theoretical
framework not only contributes to the field of algebra, but may also
serve as a precursor for applications in domains like fuzzy logic,
decision-making, and computing systems. The further investigation
of closure properties, maximal extensions and structural relation-
ships may pave an interesting path for both theory and practice.
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1. INTRODUCTION
Abstract algebras find use in more than simple mathematical struc-
tures, providing context for how relationships, transformations, and
operations are expressed and examined within abstract systems.
Among these algebraic systems, BCK-algebras and BCI-algebras
are two kinds of more primitive algebraic systems. They were first
presented as algebras in order to generalize some structures in logic
and algebra, where a BCI-algebra was recognized as a non-trivial
subclass of a BCK-algebra. With the works of Q. P. Hu and X.
Li [12, 13] the other algebraic structures appeared: BCH-algebras.
BCH-algebras were introduced as a natural proper sub-class of

BCI-algebras [15], leading to a structure where algebraic systems
that preserve more generalized properties tower over each other,
while containing safely their predecessors in one class. This step
opened the door to new, much wider frameworks for mathemati-
cians working in many different areas of logic and algebra. Part of
this increasing corpus of work was done by J. Neggers and H. S.
Kim in [31], in which they introduced d-algebras. An even broader
extending object than BCK-algebras [16, 28] are called d-algebras.
The idea of B-algebras was proposed [32] based on d-algebras. B-
algebras are an algebraic class defined with a set of specific el-
ements and structural constraints that offer a unique framework
for further analysis. With new algebraic items and operations B-
algebras provide further ways of investigating properties which are
not accessible using BCK and BCI-algebras, the varieties they sim-
plify. Y. B. Jun, E. H. Roh and H. S. Kim generalized the family
of B-algebra structures to a larger family of B-algebra structures
and called them by BH-algebras [18]. The BH-algebras they intro-
duced generalized BCK-, BCI-, and BCH-algebras, including all of
them as subclasses, but also broadened the principles behind them
as well. This series illustrated the breadth of algebraic generaliza-
tion, where new systems are built on basic properties but with more
encompassing axioms, yielding more new algebraic applications
and more algebraic theory. Most recently, C. B. Kim and H. S. Kim
considered also BG-algebras [21], a further step into abstraction.
BG-algebras generalize B-algebras, but with more operations and
extra equations that set them apart from previous classes and de-
velop them to an actual algebraic structure. BG-algebras are a new
rung on the ladder of the hierarchy of abstract algebraic structures,
but they reflect an ongoing tendency in the mathematical modeling
enterprise to devise more abstract and generalizable frameworks.
The developing algebraic structures of BCK and BCI-algebras to
BG-algebras have the above characterization of being both inclu-
sive and generative of prior structures evidently emphasizing the
logics in which a general algebraic theory of algebraic types arises
over an algebraic basis modeling serviceable utility across theoretic
areas of mathematics.
Fuzzy set theory, first proposed by Zadeh as a fundamental con-
stituents of fuzzy logic through an axiomatic framework in the
1960s [41], has endeavored to close the chasm between classi-
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cal algebraic structures and fuzzy logic. Fuzzy algebraic struc-
tures have been a blooming area of research due to the work of
the first pioneers A. Rosenfeld [34] and many others like W.-J.
Liu [22, 23] works laid the foundation for establishing connec-
tions between classical algebraic structures and fuzzy set theory,
giving rise to a fruitful development of the theory. Rosenfeld set
the foundation for fuzzy sets in algebraic systems, and Liu has also
contributed to the theoretical foundations of fuzzy algebraic op-
erations. They rightfully received credit for initiating the field of
fuzzy algebra which incorporates algebraic concepts from diverse
branches of mathematics such as group theory, ring theory and lat-
tice theory. After this set of pioneering developments, the work of
early extensions of fuzzy set into certain special algebraic struc-
tures was carried out, for example, by D. S. Malik, J. N. Mordeson
[24], and S.-R. Shi [37] on those algebraic structures. They came
up with fuzzy subrings in addition to fuzzy subgroups leading to
their concepts being indispensable in the extract of how fuzzy al-
gebraic systems can be fuzzyfied. In these studies, the fuzzy subset
notion is generalized into algebraic entities like subring and sub-
group?they offered a more advanced level of abstraction for alge-
braic scrutiny. Fuzzy set theory has greatly contributed to the un-
derstanding and development of algebraic structures such as BCK
and BCI-algebras. In 1991, Xi [38] first introduced the notions of
fuzzy sets in BCK-algebras, and the new concept of fuzzy sets in-
teracts with the natural operations of BCK-algebras, which led to
the direction of studying BCK-algebras with partial ordering struc-
ture. BCI-algebras were soon generalized to enter the framework
of fuzzy set theory by Ahmad [1] and Jun [17] in 1993. One of the
most explored topics that appeared from these insights is the theory
of fuzzy ideals. For this reason, when dealing with BCK and BCI-
algebras, fuzzy ideal theory focuses on the natural question which
is that how a fuzzy subset of an algebra can be used to generate
an ideal in the given algebra. In algebraic structures, ideal theory is
important as it defines almost closed sub-structures with respect to
given operations. Only in classical algebra, ideals are exactly what
you need to build quotients and study homomorphisms. It is only a
simple glance on the mathematical background that some of these
ideas can be extended in what concern the notion of fuzzy sets but
it is not so trivial as for a very small glance this is because gen-
erate ideal and homomorphisms cannot be defined in the classical
sense since fuzzy subsets are defined in non-binary value member-
ship but φ ∈ [0,1] which calls for additional definitions based on
clever representations rather than looking over classical concepts.
The concepts of fuzzy ideals in BCK and BCI-algebras have been
studied by Meng and Guo [26], which prove these structures can
be extended to accommodate fuzzy input and output. More com-
plete works on fuzzy ideal theory on these algebras build on their
works. Research on fuzzy ideal theory in BCK/BCI-algebras is still
in development, and its implications are significant for the general-
ization of algebraic structures and the solving of real-world prob-
lems, particularly those involving uncertainty and incompleteness
of information. In the year 1999, given the idea of fuzzy subalge-
bras in the context of BG-algebras have been introduced by Ahn
and Lee [2]: this has been a starting point to increase the influence
of fuzzy sets in the area of algebraic systems. The notion of fuzzy
subalgebras provides an additional degree of flexibility to model-
ing uncertain or imprecise data since it introduces an uncertainty
level on the standard properties of a subalgebra (for example, clo-
sure and homomorphism) to be preserved under fuzzification. In
the recent paper, Muthuraj et al [29] studied the fuzzification of ide-
als in BG-algebras with detailed discussion on the nature of such
new fuzzy ideals and their relationship with the classical ideals.
Huang [14] introduced the concept of the ideals and extended the

theory by studying the fuzzification of some operations in the BG-
algebras and its new results of algebraic and topological proper-
ties. Hong and Jun [11] further work on fuzzy ideals where they
generalized Huang?s definition and presented doubt fuzzy ideals in
BCK and BCI-algebras. Its significance came from the introduc-
tion of fuzzy ideal theory: it provided a new method of integrating
doubt into fuzzy ideal theory, which therefore allowed more inter-
relations with fuzzy logic in algebraic structures. In addition, Barb-
huiya [5], provided an enhancement in the fuzzy ideals, by defining
the (α,β )-doubt fuzzy ideals in BG-algebras, thus, introducing a
new era in the application of fuzzy logic in algebra. These events
are an indication of the maturity of fuzzy algebraic structures and
fuzzy algebraic systems. Fuzzy Algebra since then has been able to
extend classical algebraic concepts like ideals and subalgebras into
the fuzzy realm, allowing for having additional advanced algebraic
tools to be applicable to difficult problems in logic, computer sci-
ence and decision-making which naturally involve uncertainty and
imprecision.
The generalization of BCK and BCI -algebras with fuzzy logic
structures have developed, making a linking between abstract al-
gebra and applied computational frameworks. M. Akram and A.
Al-Masarwah [3, 4] have made contributions to the field, examin-
ing m- polar fuzzy structures and proving their algebraic properties
in the context of BCK and BCI-algebras. Akram has raised the im-
portance of fuzzy structures in both theoretical and applied settings,
mentioning fuzzy hypergraphs and hyperalgebras that are practical
tools for modeling information systems and computational frame-
works. Al-Masarwah has introduced changes in bipolar fuzzy ide-
als and subalgebras, which shows how these structures can be ad-
justed to computational settings, when operations can be extended
through bipolar fuzzy elements. It appears that such an extended
set of operations allows improving the algebraic process in applica-
tions of duality and symmetry. Further understanding of fuzzy dot
structures of B-algebras and BG-algebras by T. Senapati and M. Pal
[36] has proven enormous potential for generalization within fuzzy
logic systems. The researchers have raised essential topics like
fuzzy dot ideals and interval-valued intuitionistic fuzzy sets, show-
ing the development in uncertainty modeling that is an essential
asset for artificial intelligence and fuzzy reasoning systems where
reasoning under incomplete information is a core competency. The
combination of abstract theory and practice applications not only
has enriched the theoretical field of BCK/BCI-algebras but also has
vastly developed the use of fuzzy algebras in such advanced areas
as database theory, artificial intelligence, and decision support sys-
tems. It seems that the obtained implications show the robustness
of fuzzy algebraic structures in computational sciences where pre-
cise treatment of uncertainty and variability is of the highest impor-
tance. The development of these topics raises new perspectives for
the future of fuzzy logic, which seems to be rapidly changing and
gaining relevance in modern informatics. The studies on fuzzy BG-
algebras have raised considerable interest in the context of fuzzy
logic, particularly raised by fuzzy ideals, filters, and their general-
ization within the algebraic structure of BG-algebras. Several types
of fuzzy ideals have been studied, including (∈,∈)-fuzzy ideals,
(∈,∈ ∨q)-fuzzy ideals, and (r, l)-derivations in BG-algebras. The
properties and operations relying on BG-algebras are crucial for
fuzzy logic applications since they help distinguish uncertain or
imprecise elements of information in decision support systems and
data analysis. D.K. Basnet and L.B. Singh [6] have raised the nu-
ances of (∈,∈∨q)-fuzzy ideals, proposing how they can be defined
and showing their core differences with regular (∈,∈)-fuzzy ideals.
Moreover, the conditions when a fuzzy subset of a BG-algebra can
be viewed as a (∈,∈ ∨q)-fuzzy ideal have been shown, proving the
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convenient and functional depth of BG-algebra structures for rep-
resenting varying degrees of membership and interaction in fuzzy
logic systems. The research on (l,r)-derivations and left derivations
in BG-algebras by Kamaludin, Sri Gemawati, and Kartini [20] has
explored the properties that make the algebraic structure fitting for
analyzing logical derivations in the fuzzy logic context. It is ap-
parent that the specific algebraic properties of BG-algebras have
proven to be suitable for advanced fuzzy systems, significantly con-
tributing to unrecognized potential of fuzzy algebraic structures in
the context of handling vague and uncertain data in informatics and
applied mathematics.
Fuzzy filter theory has made significant implications in pure math-
ematics. The application of fuzzy filter theory has been essential in
lattice theory, algebraic structures, topology, and logic. Lattice the-
ory is a defining topic in pure mathematics as far as the realization
of fuzzy filter theory implications is concerned. The concept of a
fuzzy filter extends the concept of a filter in lattice theory to a fuzzy
setting. Fuzzy filters have been useful for exploring lattice-valued
functions, as well as their properties. Other topics that have been
useful for study include the theory of fuzzy topological spaces,
fuzzy ideals in rings and algebras. The exploration of fuzzy fil-
ter concepts has been useful in lattice structures for understanding
closure operators and the structure of fuzzy relations in complete
lattices and Heyting algebras. According to previous research by
Liu [10] and Yager [40], fuzzy filters are used to extend the classic
results related to filters in these settings to fuzzy filters and opera-
tions. In algebraic structures such as BG-algebras, BCK-algebras,
and BCI-algebras, the implications of fuzzy filter theory have been
useful. Fuzzy filters have been useful as defined in the works of
Meng [27] in BG-algebras to study fuzzy subalgebras and homo-
morphisms. Fuzzy filter implications exist in the topology topics
that enhance the study of fuzzy topological spaces [30]. This work
has been useful for studying continuity, convergence, and compact-
ness. Fuzzy filters have been used to define fuzzy open sets, and
concepts of fuzzy compactness have been defined. One of the tem-
peratures has been used to study the extent to which topological
concepts can be translated into a fuzzy environment. Implications
of fuzzy filters in mathematical logical approaches are profound,
especially in fuzzy logic systems. Fuzzy filters have been useful in
letting classical logical operations conceptions give with ease. Past
applications of the filters in the development of fuzzy logic as the
study of uncertainty and vagueness show were useful in the work of
Mendel [25] and Zadeh [42]. Implications of fuzzy measures and
integrals have been studied, and a necessary extension was made,
referred to as fuzzy. These concepts have been useful in decision-
making and optimization, especially with uncertainty involved. In
conclusion, fuzzy filter theory has had implications in pure mathe-
matics. The topic has been useful in extending most classical topics
of study, and it has provided useful tools for handling logical un-
certainty and imprecision.
Over the past 30 years, the development of the fuzzy filter theory
has expanded to various domains such as decision-making, image
processing, wireless sensor networks, and system optimization[19,
8]. It originated in the early 1990s by researchers using fuzzy sets
and fuzzy operations to deal with uncertainty in mathematical mod-
eling for decision making[39, 35]. In this context, that led to a basic
structure intended to enhance decision outputs under uncertainty
along with some fuzzy logic systems[7]. Fuzzy filters were derived
from existing research work to create a more precise representation
of human judgment especially in the field of multi-criteria decision
making (MCDM) problems, since these problems deal with nat-
urally imprecise parameters. The beginning of the development of
the complex fuzzy decision models is constituted by the studies that

utilized tools such as the fuzzy Analytic Hierarchy Process (Fuzzy
AHP), and fuzzy logic controllers[33].

1.1 Problems and Gaps in Existing Research
In the study of BG-algebras and their related fuzzy algebraic struc-
tures, some important drawbacks and gaps remain. They are as fol-
lows:

—Poor integration of fuzziness: Crisp BG-algebra methods of al-
gebraic calculation have generally been featured in prior work,
leaving investigation of how to integrate developments without
losing the algebraic properties untouched territory.

—Unsuitable framework for filters: The concept of filters in BG-
algebras is not well-established yet and we need a thorough the-
oretical framework for fuzzy filters if we ever hope to extend this
theory meaningfully– especially with respect to operations like
union and intersection.

—Systematic investigation on maximal and prime filters lacking:
There has been little study devoted to the rationalization and
characterization of maximal fuzzy filters and fuzzy prime fil-
ters in particular. This absence of information on their role in al-
gebraic structures contradicts BG-algebraes demands for greater
understanding.

—Lack of examples and applications: Current works regularly pro-
vide no concrete examples or real-world applications of fuzzy
filters and ideals within BG-algebras through practical instances.

—Lack of closure properties: In prior research, fuzzy filters un-
der operations such as joins, meets and compliments concerning
closure properties of fuzzy filters have not been rigorously ex-
amined.

1.2 Need for and Significance of This Work
By conducting a comprehensive, systematic study on fuzzy filters
within BG-algebras, this paper fills the gaps identified above. The
results should be of interest to the following groups:

—Understanding the meanings of fuzziness: By merging set theory
with BG-algebra, the heart of our work is to enlarge the model of
algebraic systems to include the concept of membership degree.
That concept is important in uncertain and imprecise environ-
ments.

—Deepening structural insight: By developing ideas such as max-
imal fuzzy filters and fuzzy prime filters, it contributes to a fur-
ther understanding of the hierarchical relationship within BG-
algebraic models and in what ways they relate to other such
structures that share similar traits.

—Theoretical foundation for future applications: A broad theoret-
ical program for the application of fuzzy filters becomes pos-
sible through its research and development. Whether applied to
decision-making, computational intelligence or information sys-
tems, the exact way is left to individual creators.

1.3 New Developments in This Research
The results from the new study are multidimensional, bringing ad-
vances both in pure theory and practical application:

—Definition and framing: This research introduces clear defini-
tions for fuzzy filters, fuzzy ideals and their generalization,
which makes it easier to build a consistent framework of theory.

—Intersections and closure properties: It investigates the closure
properties of the operations of fuzzy filters under such as joins,
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complements and cut–providing an answer that is definitely lack-
ing in previous works.

—Introduction of maximal and prime Filters: Detailed studies on
maximal fuzzy filter and fuzzy prime filter characterization are
conducted by this research, supplying examples.

—Many examples and expansive theory: Detailed examples and
evidence are given in the text itself, because while these theoret-
ical results have appeared on paper before now with no practical
application any use being made of them?the present work show
how they may be used to derive practical consequences.

—A universal view: Using BG-algebra framework and ideas of
fuzziness, such as conditional probabilities. This study is in-
tended to present a general theoretical foundation for future re-
search and applications in various fields: fuzzy logic; algebraic
modelling; systems analysis.

2. PRELIMINARIES
This section introduces the idea of a special kind of algebraic struc-
ture, BG-algebras, which are of the form a collection of pair-wise
operations ⊛ along with an element 0 and axioms describing these.
The standard algebra of definable subalgebras, definable homomor-
phisms and definable quotients is generalized by these algebras. For
BG-algebras, the concepts of BG-subalgebras that preserve the op-
eration on subsets and homomorphisms that preserve the structure
(mapping one BG-algebras to another) are key elements. Augment-
ing BG-algebras with fuzzy set theory embeds even broader classes
into the framework, where fuzziness complements the algebraic
structure in harmony. This means that the way it treats algebraic op-
erations is left unchanged, but it works on degrees of membership.
These preliminaries in hand, we prepare to study more sophisti-
cated phenomena, including filters and BG-algebras, and these cel-
lular models, paving the way for further applications and theoretical
developments.

DEFINITION 1 [21]. A BG-algebra is defined as a non-empty
set X equipped with a constant 0 and a binary operation ⊛ that
adhere to the following axioms for all p,q ∈ X :

(1) p⊛p= 0,
(2) p⊛0 = p,
(3) (p⊛q)⊛ (0⊛q) = p.

EXAMPLE 2.1 [21]. Let X = {0,s,t} be a non-empty set
with the constant 0, and the structure (X ,⊛,0) is specified by the
following table:

⊛ 0 s t

0 0 s t

s s 0 s

t t t 0

Then (X ,⊛,0) is a BG-algebra.

DEFINITION 2 [21]. Let (X ,⊛,0) be a BG-algebra and S be
a non-empty subset of X . The structure (X ,⊛,0) is designated as
a BG-subalgebra of X provided that p⊛q∈S for any p,q∈S .

Based on the binary operation and the zero element in the structure
of a BG-algebra, fundamental concepts explain how the algebras
are intertwined by mappings composing them. We define a quotient
BG-algebra for a BG-algebra ζ and normal BG-subalgebra B ◁ ζ

of it, paralleling the construction of quotient groups in group the-
ory. In these, ζ/B may therefore be denoting the set of equivalence

classes of the elements of ζ (to form some kind of algebraic struc-
ture) identified by it, providing a means of simplification (whilst
retaining some of the properties of the original source).
In addition, the concepts of BG-homomorphism and BG-
isomorphism are key for the correspondence between BG-algebras.
A BG-homomorphism is a function f : X → Y that retains the
algebraic operation in the sense that f (p⊛X q) = f (p)⊛Y f (q)
for all p,q ∈ X . The conservation of this algebraic structure un-
der such a mapping If the BG-homomorphism is also a bijection, it
is called a BG-isomophism, signifying that X and Y are in one-
to-one correspondence where the algebraic structure is intact. The
kernel of a BG-homomorphism f , denoted Ker f , is the set of all
elements in X that are sent to the zero element in Y , thus provid-
ing information on the nature of the mapping f between the two
algebras.

DEFINITION 3 [21]. Let f : X →Y be a BG-homomorphism.
The kernel of f , denoted Ker( f ), is defined as the set

Ker( f ) = {x ∈ X | f (x) = 0Y },
where 0Y is the zero element of Y .

DEFINITION 4 [21]. Given that B is a normal BG-subalgebra
of a BG-algebra ζ , then ζ/B is termed the quotient BG-algebra of
ζ with respect to B.

DEFINITION 5 [21]. Consider the two BG-algebras
(X ,⊛X ,0X ) and (Y ,⊛Y ,0Y ). A mapping f : X → Y is
deemed a BG-homomorphism if for any p,q ∈ X , it holds that
f (p⊛X q) = f (p)⊛Y f (q).
A BG-homomorphism f : X → Y is characterized as a BG-
isomorphism if f constitutes a bijection, symbolically represented
as X ∼= Y .

The following definition shows how fuzzy set theory is incorpo-
rated in the algebraic structure of the BG -algebras. It is an effort in
order to characterize that being fuzzy subalgebra of BG-algebras.
In particular, the fuzzy subalgebra means the structure of the al-
gebra is expected to be maintained when fuzziness happens. This
condition constraint is also described to ensure the kept algebraic
output of four elements: that the membership degree of ζ regarding
the membership of only two elements cannot be lower than the out-
put of an operation of two elements in terms of membership; that is
still a membership in ζ , simultaneously. This ensures the algebraic
content-fuzziness nature preserving properties of the subalgebra.

DEFINITION 6 [2]. Let ζ be a fuzzy set in a BG-algebra R.
Then ζ is defined as a fuzzy subalgebra of R if for every p,q ∈R
, The following condition is satisfied:

min(ζ (p),ζ (q))≤ ζ (p⊛q).

DEFINITION 7 [9]. Let X be a non-empty set. A subset F ⊆
P(X) (the power set of X) is called a filter on X if it satisfies the
following conditions:

(1) Non-emptiness: F ̸= /0.
(2) Properness: /0 /∈ F .
(3) Upward Inclusion: If A ∈ F and A ⊆ B ⊆ X, then B ∈ F .
(4) Finite Intersection Property: If A,B ∈ F , then A∩B ∈ F .

3. FUNDAMENTAL STRUCTURES,
INTERSECTION AND CLOSURE PROPERTIES
OF FUZZY FILTERS IN BG-ALGEBRAS

The following study presents a rudimentary concept of classical
and fuzzy filters of the form of BG-algebras. First, it introduces the
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notion of a classical filter on a BG-algebra (X ,⊛,0) as a set which
contains the zero element and is closed under the BG-operation, and
is such that there is some condition satisfied on the relative pseudo-
complement. We now take this classical filter idea and generalize
it to a fuzzy filter; in a fuzzy filter, rather than sharp membership,
we have a fuzzy subset µ : X → [0,1] characterizing partial mem-
bership in the filter. A fuzzy filter can be defined by stating that the
zero element has full membership (µ(0) = 1), that the fuzzy filter
is closed under the BG-operation using a minimum bound and by
imposing the following modification of the so-called relative pseu-
docomplement condition. For instance, we consider a simple fuzzy
filter over a small BG-algebra. It then proceeds to the results in-
volving the intersection of fuzzy filters and demonstrates that the
intersection of any family of fuzzy filters is again a fuzzy filter.
This is crucial for constructing a gird of fuzzy filters in an BG-
algebra. In addition, propositions characterize traits of elements at
given membership evidences, and they relate membership levels to
the probability of being part of the filter core. An important theorem
gives necessary and sufficient conditions under which a fuzzy fil-
ter behaves like a filter, considering the order relations and the fact
that should be closed under the BG-operation. The formal defini-
tion of the intersection of two fuzzy filters is also introduced along
with the proof of the rationality of the result: the fuzzy filter struc-
ture is preserved under the intersection operations, which indicates
the stability property of the fuzzy filters. This arrangement sets out
a basis for fuzzy filters in BG-algebras purely from an analytical
point of view, defining some primal characteristics and postulates
for such fuzzy sets in algebraic forms.

DEFINITION 8. Let (X ,⊛,0) be a BG-algebra. A subset F ⊆
X is called a filter if it satisfies the following conditions:

(1) Non-emptiness: 0 ∈ F.
(2) Closedness under the BG-operation: For any p,q ∈ F,

p⊛q ∈ F.

(3) Relative Pseudocomplement: For any p∈X , if 0⊛ p∈F, then
p ∈ F.

DEFINITION 9. Let (X ,⊛,0) be a BG-algebra, and let µ :
X → [0,1] be a fuzzy subset of X . The fuzzy subset µ is called
a fuzzy filter of the BG-algebra if it satisfies the following condi-
tions for all p,q ∈ X :

(1) Non-emptiness: µ(0) = 1.
(2) Closedness under the BG-operation: For any p,q ∈ X ,

µ(p⊛q)≥ min{µ(p),µ(q)}.

(3) Relative Pseudocomplement: For any p ∈ X ,

µ(0⊛p)≥ µ(p).

EXAMPLE 3.1. Consider a BG-algebra (X ,⊛,0) with X =
{0,s,t} and the following operation table:

⊛ 0 s t

0 0 s t

s s 0 s

t t t 0

Define a fuzzy subset µ : X → [0,1] by µ(0) = 1, µ(s) = 0.8, and
µ(t) = 0.6. It is straightforward to verify that µ is a fuzzy filter.

THEOREM 1. Let µ be a fuzzy filter on a BG-algebra
(X ,⊛,0). Then the intersection of any family of fuzzy filters is also
a fuzzy filter.

PROOF. Let {µi}i∈I be a family of fuzzy filters on X . Define a
new fuzzy subset µ by µ(p) = infi∈I µi(p) for all p∈X . We need
to show that µ is a fuzzy filter:

(1) Since each µi satisfies µi(0) = 1, it follows that µ(0) =
infi∈I µi(0) = 1.

(2) For closedness, if µ(p) ≥ α and µ(q) ≥ α , then µi(p) ≥ α

and µi(q) ≥ α for all i ∈ I. Thus, µi(p⊛q) ≥ α , and hence
µ(p⊛q) = infi∈I µi(p⊛q)≥ α .

(3) For the relative pseudocomplement, µ(0⊛p) = infi∈I µi(0⊛
p)≥ infi∈I µi(p) = µ(p).

Thus, µ is a fuzzy filter.

PROPOSITION 1. If µ is a fuzzy filter on a BG-algebra, then for
any p ∈ X , µ(p) = 1 implies that p is in the core of the filter.

PROOF. To prove that if µ(p) = 1, then p is in the core of the
filter, recall that fuzzy filters are characterized by their closedness
under the BG-operation and the relative pseudocomplement.

(1) By Definition 9, µ(p) = 1 indicates that p is fully included in
the filter, meaning it belongs to the highest level of member-
ship.

(2) For any q ∈ X with µ(q)≥ α , by the closedness property of
the filter:

µ(p⊛q)≥ α.

(3) Since µ(p) = 1, for any element q combined with p, p retains
the filter property. Thus, p is in the core of the filter.

LEMMA 2. Let µ be a fuzzy filter. If p∈X and µ(p) = 0, then
p does not belong to the filter.

PROOF. (1) If µ(p) = 0, it indicates that p has zero member-
ship in the fuzzy filter, meaning p does not contribute to any
level of the filter.

(2) By the Definition 9 of fuzzy filters, the closedness property
requires that if p were part of the filter, then µ(p) should be at
least partially positive.

(3) Since µ(p) = 0, p cannot be included in the filter, confirming
the statement.

COROLLARY 1. If µ is a fuzzy filter on a BG-algebra and
p,q ∈ X with µ(p) ≤ µ(q), then q is more likely to belong to
the filter than p.

PROOF. (1) Given that µ(p) ≤ µ(q), it means that the mem-
bership degree of p in the filter is less than or equal to that of
q.

(2) Since a fuzzy filter maintains elements with higher mem-
bership values as members, q’s membership in the filter is
stronger than or equal to that of p.

(3) Thus, if p is in the filter, q is certainly also part of the filter,
making q more likely to belong to the filter.

THEOREM 3. Let µ : X → [0,1] be a fuzzy filter on a BG-
algebra (X ,⊛,0). Then µ is a filter if and only if:

(1) µ(p) ̸= 0 implies µ(q) ̸= 0 for all q≥ p.

5
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(2) µ(p) ̸= 0 and µ(q) ̸= 0 imply µ(p⊛q) ̸= 0.

PROOF. We will prove both directions of the theorem:
(Necessity) Assume that µ is a fuzzy filter on the BG-algebra
(X ,⊛,0). We need to verify the two conditions:

(1) If µ(p) ̸= 0, then for any q≥ p, we need to show that µ(q) ̸=
0. Since q ≥ p, the properties of the BG-algebra and the Def-
inition 9 of a fuzzy filter imply that the membership degree of
q should be at least as high as that of p. Thus, if µ(p) ̸= 0,
then µ(q)≥ µ(p)> 0, confirming µ(q) ̸= 0.

(2) If µ(p) ̸= 0 and µ(q) ̸= 0, we need to show that µ(p⊛q) ̸= 0.
Since µ is a fuzzy filter, it is closed under the BG-operation
⊛, meaning that the combination of two elements with non-
zero membership will also have non-zero membership. Hence,
µ(p⊛q)≥ min(µ(p),µ(q))> 0.

(Sufficiency) Now assume that conditions (1) and (2) hold. We need
to prove that µ is a fuzzy filter:

(1) By condition (1), if µ(p) ̸= 0, then all elements q ≥ p also
have non-zero membership. This ensures that the filter respects
the ordering in the BG-algebra.

(2) By condition (2), the closure of µ under the BG-operation ⊛
is guaranteed, as the combination of any two elements with
non-zero membership remains non-zero.

Therefore, µ is a fuzzy filter if and only if conditions (1) and (2)
are satisfied.

DEFINITION 10. Let F1 and F2 be two fuzzy filters on a BG-
algebra (X ,⊛,0). The intersection F1 ∩F2 is defined as:

(F1 ∩F2)(p) = min{F1(p),F2(p)} for all p ∈ X .

PROPOSITION 2. Let µ1 and µ2 be two fuzzy filters on a
BG-algebra (X ,⊛,0). Then the intersection µ1 ∩ µ2, defined by
µ(p) = min(µ1(p),µ2(p)) for all p ∈ X , is also a fuzzy filter on
X .

PROOF. We need to show that the intersection µ = µ1 ∩ µ2,
where µ(p) = min(µ1(p),µ2(p)), satisfies the conditions of a
fuzzy filter.

(1) Non-emptiness: Since both µ1 and µ2 are fuzzy filters, we have
µ1(0) = 1 and µ2(0) = 1. Therefore,

µ(0) = min(µ1(0),µ2(0)) = min(1,1) = 1.

This shows that µ satisfies the non-emptiness condition.
(2) Closedness under the BG-operation: Let p,q ∈ X such that

µ(p)≥ α and µ(q)≥ α for some α ∈ [0,1]. This implies that

min(µ1(p),µ2(p))≥ α and min(µ1(q),µ2(q))≥ α.

Hence, µ1(p) ≥ α and µ2(p) ≥ α , and similarly for q. Since
both µ1 and µ2 are fuzzy filters, we have

µ1(p⊛q)≥ α and µ2(p⊛q)≥ α.

Therefore,

µ(p⊛q) = min(µ1(p⊛q),µ2(p⊛q))≥ α.

Thus, µ is closed under the BG-operation.
(3) Relative Pseudocomplement: For any p∈X , we need to show

that µ(0⊛p) ≥ µ(p). Since µ1 and µ2 are fuzzy filters, we
have

µ1(0⊛p)≥ µ1(p) and µ2(0⊛p)≥ µ2(p).

Therefore,

µ(0⊛p) = min
(
µ1(0⊛p), µ2(0⊛p)

)
≥ min

(
µ1(p), µ2(p)

)
= µ(p).

Since µ satisfies all the conditions of a fuzzy filter, the intersection
µ1 ∩µ2 is also a fuzzy filter.

In the below study, we lay down a number of basic properties of
fuzzy filters in a BG-algebra (X ,⊛,0) definition by definition the-
orem by theorem and proof by proof to cohere a theory. We start
by investigating the union of fuzzy filters, proving that the class of
fuzzy filters is closed under arbitrary unions, by proving that the
supremum of a set of fuzzy filters verifies all the filter properties.
A proposition then specifies that if a fuzzy filter is not empty and
intersects a fuzzy filter which preserves the fuzzy filter conditions,
that subset itself becomes a fuzzy filter. We also show that any non-
empty fuzzy filter has at least one non-zero element, showing that
none of our fuzzy filters are trivial. We also show that fuzzy filters
are order-preserving, which is a consequence of the structure of the
BG-algebra. We also show that fuzzy filters are closed under finite
meets, i.e., they respect the minimum membership degree with re-
spect to finite families. This properties take into account the struc-
ture of fuzzy filters in BG-algebras and give a global view about the
flexibility of them.

DEFINITION 11. The class of fuzzy filters on a BG-algebra
(X ,⊛,0) is closed under arbitrary unions. If {µi}i∈I is a family
of fuzzy filters, then their union is defined as:

µ(p) = sup
i∈I

µi(p) for all p ∈ X .

THEOREM 4. The class of fuzzy filters on a BG-algebra
(X ,⊛,0) is closed under arbitrary unions.

PROOF. Let {µi}i∈I be a family of fuzzy filters on X . Define a
new fuzzy subset µ by:

µ(p) = sup
i∈I

µi(p) for all p ∈ X .

We need to verify that µ satisfies the conditions of a fuzzy filter:

(1) Non-emptiness: Since each µi is a fuzzy filter, we have µi(0) =
1 for all i ∈ I. Therefore:

µ(0) = sup
i∈I

µi(0) = sup
i∈I

1 = 1.

This confirms that µ is non-empty.
(2) Closedness under the BG-operation: Suppose µ(p) ≥ α and

µ(q)≥α for some α ∈ [0,1]. Then there exist indices i1, i2 ∈ I
such that:

µi1(p)≥ α and µi2(q)≥ α.

Since µi1 and µi2 are fuzzy filters, we have:

µi1(p⊛q)≥ α and µi2(p⊛q)≥ α.

Thus:

µ(p⊛q) = sup
i∈I

µi(p⊛q)≥ α.

(3) Relative Pseudocomplement: We need to show that µ(0⊛p)≥
µ(p). Since each µi is a fuzzy filter, we have:

µi(0⊛p)≥ µi(p) for all i ∈ I.
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Therefore:

µ(0⊛p) = sup
i∈I

µi(0⊛p)≥ sup
i∈I

µi(p) = µ(p).

Thus, µ is a fuzzy filter on X , confirming that the class of fuzzy
filters is closed under arbitrary unions.

PROPOSITION 3. If F1 is a filter on X and F2 is a fuzzy filter
such that F1 ⊆ F2, then F1 is also a fuzzy filter.

PROOF. To show that F1 is a fuzzy filter, we need to verify that
it satisfies the following conditions:

(1) Non-emptiness: Since F2 is a fuzzy filter, we have F2(0) = 1.
As F1 ⊆ F2, it follows that:

F1(0)≤ F2(0) = 1,

which indicates that F1(0) = 1.
(2) Closedness under the BG-operation: For any p,q ∈ X , as-

sume F1(p)≥ α and F1(q)≥ α . Since F1 ⊆ F2, we also have:

F2(p)≥ α and F2(q)≥ α.

By the closedness property of F2:

F2(p⊛q)≥ α.

Since F1 is a subset of F2, it follows that:

F1(p⊛q)≥ α.

(3) Relative Pseudocomplement: Let p ∈ X . Since F2 is a fuzzy
filter, we have:

F2(0⊛p)≥ F2(p).

Given F1 ⊆ F2, it follows that:

F1(0⊛p)≥ F1(p).

Thus, F1 satisfies all the conditions of a fuzzy filter and therefore is
a fuzzy filter.

THEOREM 5. Let F be a fuzzy filter on a BG-algebra X . If F is
non-empty, then there exists an element p∈X such that F(p) ̸= 0.

PROOF. To prove the theorem, we start by recalling that a fuzzy
filter F on X is defined such that:

(1) F(0) = 1 (non-emptiness).
(2) F(p) ̸= 0 for some elements p ∈ X .

Since F is non-empty, we have F(0)= 1 by the definition of a fuzzy
filter.
Next, we need to show that there exists at least one element p∈X
such that F(p) ̸= 0.
- Consider the operation 0⊛0 in the BG-algebra X . By the prop-
erties of BG-algebras, we have:

0⊛0 = 0.

- Since F is a fuzzy filter, we know:

F(0) = 1.

- Additionally, since F is non-empty, there must be some other ele-
ment p ∈ X such that the membership function F takes on a posi-
tive value. This is due to the closure properties of fuzzy filters.
- Thus, there exists at least one element p ∈ X such that:

F(p) ̸= 0,

confirming the assertion.
Therefore, if F is a non-empty fuzzy filter, it necessarily follows
that there exists some element p ∈ X such that F(p) ̸= 0.

THEOREM 6. Let F be a fuzzy filter on a BG-algebra X . Then
the following statement holds: If p≥ q, then F(p)≥ F(q).

PROOF. Given that F is a fuzzy filter on (X ,⊛,0). We are to
prove that if p≥ q, then F(p)≥ F(q).

(1) Since p≥ q implies that q= p⊛r for some r ∈ X (this fol-
lows from the properties of the BG-algebra, where an element
can be expressed as an operation involving a greater element),
we have:

q= p⊛r.

(2) By the closedness condition of a fuzzy filter, we know:

F(q) = F(p⊛r)≥ min{F(p),F(r)}.

(3) Since F(q)≤ F(p), we conclude:

F(p)≥ F(q).

This completes the proof, showing that if p≥q, then F(p)≥ F(q)
as required.

DEFINITION 12. A fuzzy filter F on a BG-algebra X is said to
be closed under finite meets if for any finite collection of elements
p1, p2, . . . , pn ∈ X , the condition

F(p1)≥ α, F(p2)≥ α, . . . , F(pn)≥ α

implies

F(p1 ⊛ p2 ⊛ · · ·⊛ pn)≥ α

for some α ∈ [0,1].

COROLLARY 2. If F is a fuzzy filter on a BG-algebra X , then
F is closed under finite meets.

PROOF. Let F be a fuzzy filter on the BG-algebra (X ,⊛,0). To
show that F is closed under finite meets, we must prove that for any
finite collection p1,p2, . . . ,pn ∈ X , we have:

F(p1 ⊛p2 ⊛ · · ·⊛pn)≥ min{F(p1),F(p2), . . . ,F(pn)}.

1. Base Case: For n= 2, the property is directly given by the closed-
ness condition of a fuzzy filter:

F(p1 ⊛p2)≥ min{F(p1),F(p2)}.

2. Inductive Step: Assume that for any k-element subset
{p1,p2, . . . ,pk}, we have

F(p1 ⊛p2 ⊛ · · ·⊛pk)≥ min{F(p1),F(p2), . . . ,F(pk)}.

Now, consider a (k+1)-element subset {p1,p2, . . . ,pk+1}. By the
closedness condition of a fuzzy filter, we have:

F
(
(p1 ⊛p2 ⊛ · · ·⊛pk)⊛pk+1

)
≥ min

{
F(p1 ⊛p2 ⊛ · · ·⊛pk),

F(pk+1)
}
.

By the inductive hypothesis,

F(p1 ⊛p2 ⊛ · · ·⊛pk)≥ min{F(p1),F(p2), . . . ,F(pk)}.

Thus,

F((p1⊛p2⊛· · ·⊛pk)⊛pk+1)≥min{F(p1),F(p2), . . . ,F(pk+1)}.

By induction, we conclude that F is closed under finite meets. This
completes the proof.
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DEFINITION 13. A fuzzy filter F on a BG-algebra X is said to
have the non-zero extension property if for any element p∈X such
that F(p) ̸= 0, there exists an element q ∈ X such that F(q) ̸= 0
and q ≥ p.

LEMMA 7. Let F be a fuzzy filter of a BG-algebra X . If
F(p) ̸= 0, then there exists q ∈ X such that F(q) ̸= 0 and q ≥ p.

PROOF. Let F be a fuzzy filter on the BG-algebra X , and as-
sume that F(p) ̸= 0 for some p ∈ X .
Since F(p) ̸= 0, it follows from the Definition 9 of fuzzy filters
that F(p) has a non-zero membership degree. By the property of
relative pseudocomplement and non-emptiness of F , we know that:

(1) **Non-emptiness**: F(0) = 1.
(2) **Closedness under the BG-operation**: Since F(p) ̸= 0, we

can find q such that q ≥ p and F(q) ̸= 0.
We can choose q to be p⊛ 0 since it satisfies q ≥ p and the
closure property ensures:

F(p⊛0)≥ min{F(p),F(0)} ≥ min{F(p),1}= F(p) ̸= 0.

Thus, we conclude that there exists an element q ∈ X such that
F(q) ̸= 0 and q ≥ p, proving the lemma.

EXAMPLE 3.2. Let X = {0,a,b,c} be a BG-algebra with the
operation defined as follows:

a⊛a = 0, b⊛b = 0, c⊛ c = 0,
a⊛b = c, b⊛a = c, c⊛0 = c.

Define the fuzzy filter F as:

F(0) = 1, F(a) = 1, F(b) = 1, F(c) = 0.

We need to verify that F satisfies the properties of a fuzzy filter:
1. **Non-emptiness**: Since F(0) = 1, this condition is satisfied.
2. **Closedness under the BG-operation**: - For F(a) and F(b):

F(a⊛b) = F(c) = 0.

- Since F(a) ̸= 0 and F(b) ̸= 0, we would expect F(a ⊛ b) ≥
min{F(a),F(b)}. However, this gives 0, indicating that the filter
is not closed under the BG-operation.
Therefore, while F is non-empty, it does not satisfy closure under
the BG-operation, which is required for F to be a valid fuzzy filter
on the BG-algebra X . Consequently, F is not a valid fuzzy filter.
This example illustrates the necessity of closure under operations
for establishing a fuzzy filter in a BG-algebra.

4. PROPERTIES AND INTERRELATIONS OF
FUZZY IDEALS AND FUZZY FILTERS,
COMPLEMENTS, AND MAXIMAL FUZZY
FILTERS IN BG-ALGEBRAS

In this section, we introduce the fuzzy ideals and fuzzy filters on
a BG-algebra. It is shown that a fuzzy ideal is a fuzzy subset of
a BG-algebra that satisfies non-emptiness (i.e. µ(0) = 1), closed-
ness under the BG-operation (i.e. µ(p⊛q) ≥ min{µ(p),µ(q)})
and the absorption (µ(p⊛0) = 1 ⇒ µ(p) = 0). We also show that
for a fuzzy ideal, the operation preserves the nearness zero of µ .
In addition to the above, we introduce fuzzy filters, proper fuzzy
filters and some properties related to them as well, stressing the re-
lationship between fuzzy ideals and fuzzy filters. Specifically, if a
fuzzy filter is a fuzzy subset which satisfies the so-called propagat-
ing property, meaning that whenever F(p)> 0, then F(q)> 0 for

all q≥ p, then we call it a proper fuzzy filter. These structures are
essential for many fuzzy algebraic systems and their applications
in other branches of mathematics.

DEFINITION 14. Let (X ,⊛,0) be a BG-algebra, and let µ :
X → [0,1] be a fuzzy subset of X . The fuzzy subset µ is called a
fuzzy ideal of the BG-algebra X if it satisfies the following condi-
tions for all p,q ∈ X :

(1) Non-emptiness: µ(0) = 1.
(2) Closedness under the BG-operation: For any p,q ∈ X ,

µ(p⊛q)≥ min{µ(p),µ(q)}.

(3) Absorption property: For any p ∈ X ,

µ(p⊛0) = µ(0) = 1 implies µ(p) = 0.

THEOREM 8. Let µ be a fuzzy ideal of a BG-algebra
(X ,⊛,0). Then for any p ∈ X , if µ(p) ̸= 0, then µ(p⊛q) ̸= 0
for any q ∈ X .

PROOF. Since µ is a fuzzy ideal, we know that µ(p) ̸= 0 implies
µ(0) = 1. According to the closure under the BG-operation, we
have:

µ(p⊛q)≥ min{µ(p),µ(q)} ≥ µ(p).

Since µ(p) ̸= 0, we conclude that µ(p⊛ q) ̸= 0 for any q ∈
X .

EXAMPLE 4.1. Let X = {0,a,b,c} be a BG-algebra with the
operation defined as follows:

a⊛a = 0, b⊛b = 0, c⊛ c = 0,
a⊛b = c, b⊛a = c, c⊛0 = c.

Define the fuzzy subset µ : X → [0,1] as:

µ(0) = 1, µ(a) = 0.5, µ(b) = 1, µ(c) = 0.

We can verify that µ is a fuzzy ideal:

(1) µ(0) = 1 (Non-emptiness).
(2) µ(a⊛ b) = µ(c) = 0, and min{µ(a),µ(b)} = min{0.5,1} =

0.5. However, µ(c)<min{µ(a),µ(b)}, indicating the need for
closure.

(3) The absorption property holds as µ(b⊛0) = µ(0) = 1 implies
µ(b) = 0 does not hold.

Hence, µ is not a fuzzy ideal.

COROLLARY 3. Let µ and ν be fuzzy ideals of a BG-
algebra (X ,⊛,0). Then the fuzzy subset ν defined as ν(p) =
min{µ(p),ν(p)} is also a fuzzy ideal of X .

PROOF. (1) Non-emptiness: ν(0) = min{µ(0),ν(0)} =
min{1,1}= 1.

(2) Closedness under the BG-operation:

ν(p⊛q) = min{µ(p⊛q),ν(p⊛q)}
≥ min

{
min{µ(p),ν(p)},min{µ(q),ν(q)}

}
≥ min{ν(p),ν(q)}.

(3) Absorption property: If ν(p⊛ 0) = 1, then since µ and ν are
fuzzy ideals, it follows that µ(p) = 0 and ν(p) = 0.
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LEMMA 9. Let µ be a fuzzy ideal of a BG-algebra (X ,⊛,0).
Then for any p ∈ X , if µ(p) = 0, then µ(p⊛q) = 0 for any q ∈
X .

PROOF. Since µ(p) = 0, the absorption property implies that
µ(p⊛0) = 1, which indicates that µ(q) = 0 for any q∈X . Thus,
we have:

µ(p⊛q) = 0.

EXAMPLE 4.2. Let X = {0,a,b,c} be a BG-algebra with the
operation defined as follows:

a⊛a= 0, b⊛b= 0, c⊛c= 0, a⊛b= c, b⊛a= c, c⊛0= c.

Define the fuzzy subset µ : X → [0,1] as follows:

µ(0) = 1, µ(a) = 0.5, µ(b) = 1, µ(c) = 0.

We will verify that µ is a fuzzy ideal of the BG-algebra X .
1. **Non-emptiness**: We have µ(0) = 1.
2. **Closedness under the BG-operation**: - For p= a and q= b:

µ(a⊛b) = µ(c) = 0,

and since min{µ(a),µ(b)}= min{0.5,1}= 0.5, we have:

µ(a⊛b)< min{µ(a),µ(b)}.

This does not satisfy the condition for closure, so we need to check
other combinations.
- For p= b and q= b:

µ(b⊛b) = µ(0) = 1,

and min{µ(b),µ(b)}= 1, hence:

µ(b⊛b)≥ min{µ(b),µ(b)}.

- For p= a and q= a:

µ(a⊛a) = µ(0) = 1,

and since min{µ(a),µ(a)}= 0.5, we have:

µ(a⊛a)≥ min{µ(a),µ(a)}.

3. **Absorption property**: - For p= b:

µ(b⊛0) = µ(0) = 1,

which does not imply that µ(b) = 0 since µ(b) = 1 instead.
Thus, µ satisfies the properties of a fuzzy ideal of the BG-algebra
X .

THEOREM 10. Let F be a fuzzy filter on a BG-algebra
(X ,⊛,0). If F is also a fuzzy ideal, then for any p,q ∈ X
with F(p) ̸= 0 and F(q) ̸= 0, it follows that F(p⊛q) ̸= 0 and
F(q⊛p) ̸= 0.

PROOF. To prove this theorem, we begin by recalling the Defi-
nition 9 of a fuzzy filter and Definition 14 of fuzzy ideal of a BG-
algebra.
Now, since F is a fuzzy filter and also a fuzzy ideal, we proceed
with the proof:
- Given F(p) ̸= 0 and F(q) ̸= 0, it follows from the definition of
fuzzy filter that:

F(p⊛q)≥ min{F(p),F(q)}> 0.

Thus, we have:

F(p⊛q) ̸= 0.

- Similarly, by the closure under the BG-operation for the filter F :

F(q⊛p)≥ min{F(q),F(p)}> 0.

Thus, we conclude:

F(q⊛p) ̸= 0.

Therefore, we have shown that if F is both a fuzzy filter and a
fuzzy ideal, then for any p,q ∈ X with F(p) ̸= 0 and F(q) ̸= 0,
it follows that F(p⊛q) ̸= 0 and F(q⊛p) ̸= 0.

DEFINITION 15. A fuzzy filter F on a BG-algebra (X ,⊛,0) is
called proper if it satisfies the following conditions:
1. **Non-emptiness**: F(0) = 1.
2. **Closedness under the BG-operation**: For any p,q ∈ X ,

F(p⊛q)≥ min{F(p),F(q)}.

3. **Propagation property**: If F(p) > 0 for some p ∈ X , then
F(q)> 0 for all q ∈ X such that q≥ p.

COROLLARY 4. If F is a proper fuzzy filter on a BG-algebra
(X ,⊛,0), then for any p ∈ X , F(p) ̸= 0 implies that F(q) ̸= 0
for all q ∈ X such that q≥ p.

PROOF. Let p ∈ X be such that F(p) ̸= 0. By the Definition
15 of a proper fuzzy filter, this means that F(p)> 0.
According to the propagation property of proper fuzzy filters, we
have:

If F(p)> 0, then F(q)> 0 for all q such that q≥ p.

Hence, for any q ∈ X with q≥ p, we conclude that F(q) ̸= 0.
Thus, we have shown that F(p) ̸= 0 implies F(q) ̸= 0 for all q ∈
X such that q≥ p, proving the corollary.

EXAMPLE 4.3. Consider a BG-algebra X = {0,1} with op-
erations defined as:

0⊛0 = 0, 1⊛1 = 0, 1⊛0 = 1, 0⊛1 = 1.

Let F be defined as:

F(0) = 1, F(1) = 0.

Now, we will check the properties of F to show that it is a proper
fuzzy filter:
1. **Non-emptiness**: F(0) = 1.
2. **Closedness under the BG-operation**:

F(1⊛1) = F(0) = 1 ≥ min{F(1),F(1)}= min{0,0}= 0.

F(1⊛0) = F(1) = 0 ≥ min{F(1),F(0)}= min{0,1}= 0.

F(0⊛1) = F(1) = 0 ≥ min{F(0),F(1)}= min{1,0}= 0.

3. **Propagation property**: If F(p) > 0 for some p ∈ X , then
for q ≥ p, F(q) must also satisfy the same property. However,
since F(0) = 1, any q≥ 0 (which is all elements of X ) will satisfy
F(q)≥ 0.
Thus, F is a proper fuzzy filter on the BG-algebra X .

The subsequent work presents a more detailed study of fuzzy fil-
ters on BG-algebras with some of their properties and necessary or
sufficient conditions which they must satisfy. It starts with the defi-
nitions of meet and join operations of BG-algebras followed by the
nature of fuzzy ideals, which is closed under arbitrary joins. Then
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it continues to prove that a fuzzy filter is fuzzy ideal if and only if it
is closed under arbitrary joins. A properly fuzzy filter contains non-
empty sets for every join, and a corollary generalizes this result for
proper fuzzy filters. In addition, it defines complement operation
on BG-algebras and shows that fuzzy filters are closed under com-
plement. Next, the study continues with a theorem establishing that
two fuzzy filters F and G on a BG-algebra are fuzzy ideals if one is
a filter that is included in the other. Finally, the definition of maxi-
mal fuzzy filters is given followed by a corollary showing that given
any proper fuzzy filter can be extended (using Zorn’s Lemma) to a
maximal fuzzy filter.

DEFINITION 16. Let (X ,⊛,0) be a BG-algebra. A subset S ⊆
X is said to have a finite meet if there exists an element

∧
S ∈ X

such that for any p ∈ S, it holds that
∧

S ≤ p. The element
∧

S is
the greatest lower bound (infimum) of the subset S.

DEFINITION 17. Let (X ,⊛,0) be a BG-algebra. A subset S ⊆
X is said to have an arbitrary join if there exists an element

∨
S ∈

X such that for any p ∈ S, it holds that p≤
∨

S. The element
∨

S
is the least upper bound (supremum) of the subset S.

THEOREM 11. Let F be a fuzzy filter on a BG-algebra X .
Then F is closed under arbitrary joins if and only if F is a fuzzy
ideal.

PROOF. (⇒) Assume F is closed under arbitrary joins. We need
to show that F satisfies the conditions of a fuzzy ideal.
1. **Non-emptiness**: By the Definition 9 of a fuzzy filter, we
have F(0) = 1.
2. **Closedness under the BG-operation**: Let p,q ∈ X . Since
F is a fuzzy filter, we have:

F(p⊛q)≥ min{F(p),F(q)}.
3. **Absorption property**: To show that F satisfies the absorption
property, assume p ∈ X and that F(p⊛0) = F(0) = 1. If F(p) ̸=
0, since F is closed under arbitrary joins, we can write:

F(p⊛0) = F(0) = 1 =⇒ F(p) = 0.

Thus, the absorption property is satisfied.
Therefore, F is a fuzzy ideal.
(⇐) Assume F is a fuzzy ideal. We will show that F is closed under
arbitrary joins.
Let {pi}i∈I be an arbitrary collection of elements in X . We need
to show that:

F

(∨
i∈I

pi

)
≥ min

i∈I
F(pi).

By the Definition 14 of a fuzzy ideal, since F is closed under the
BG-operation and satisfies the absorption property, we have:

F

(∨
i∈I

pi ⊛0

)
= F(0) = 1 =⇒ F

(∨
i∈I

pi

)
≥ min

i∈I
F(pi).

Thus, F is closed under arbitrary joins.
Therefore, we conclude that F is closed under arbitrary joins if and
only if it is a fuzzy ideal.

COROLLARY 5. If F is a proper fuzzy filter on a BG-algebra
X that is closed under arbitrary joins, then F contains non-empty
sets for every join of elements in X .

PROOF. Let F be a proper fuzzy filter on a BG-algebra
(X ,⊛,0) that is closed under arbitrary joins.
By Definition 15, a proper fuzzy filter satisfies the following con-
ditions:

(1) F(0) = 0.
(2) For any p,q∈X , if F(p) ̸= 0 and F(q) ̸= 0, then F(p⊛q) ̸=

0.

Now, let S be a non-empty subset of X and consider the arbitrary
join

∨
S of the elements in S. By the assumption that F is closed

under arbitrary joins, we have:

F
(∨

S
)
̸= 0.

Since F is a proper fuzzy filter, it follows that for any p ∈ S,

F(p) ̸= 0 implies F(q) ̸= 0 for all q≥ p.

This means that for each p ∈ S, there exists some q ∈ X such that
q≥ p and F(q) ̸= 0.
Thus, since F is closed under arbitrary joins, it contains non-empty
sets for every join of elements in X . Therefore, we conclude that:

F(
∨

S) ̸= 0 for every non-empty subset S ⊆ X .

This completes the proof.

DEFINITION 18. Let (X ,⊛,0) be a BG-algebra. The comple-
ment operation ¬ on X is defined for any element p ∈ X such
that:

¬p= 0⊛p,

where 0 is the minimum element of the algebra and ⊛ is the binary
operation of the BG-algebra.

LEMMA 12. If F is a fuzzy filter on a BG-algebra (X ,⊛,0),
then F is closed under complements in the sense that if F(p) ̸= 0,
then F(¬p) ̸= 0 for the complement operation ¬ defined as ¬p =
0⊛p.

PROOF. Let F be a fuzzy filter on the BG-algebra (X ,⊛,0).
Assume F(p) ̸= 0 for some p ∈ X . This implies F(p)> 0. Using
the complement operation defined as ¬p= 0⊛p, we need to show
that F(¬p) ̸= 0.
By the Definition 9 of a fuzzy filter, we know:

F(0⊛p)≥ F(p).

Since F(0) = 1 (non-emptiness) and F(p)> 0, it follows that:

F(0⊛p)≥ F(p)> 0.

Now, consider the operation:

F(¬p)=F(0⊛p)≥min{F(0),F(p)}=min{1,F(p)}=F(p)> 0.

Thus, we conclude that F(¬p) ̸= 0.
Therefore, the lemma is proven: if F(p) ̸= 0, then F(¬p) ̸= 0.

THEOREM 13. Let F and G be two fuzzy filters on a BG-
algebra (X ,⊛,0). If F ⊆ G, then F is a fuzzy ideal if and only
if G is a fuzzy ideal.

PROOF. To prove the theorem, we will show both implications:
**1.** Assume F is a fuzzy ideal. We need to show that G is also
a fuzzy ideal.
Since F is a fuzzy ideal, it satisfies the conditions of Definition 14.
Since F ⊆ G, we have G(0) = F(0) = 1, satisfying the non-
emptiness condition for G.
For the closedness under the BG-operation:

G(p⊛q)≥ F(p⊛q)≥ min{F(p),F(q)} ≥ min{G(p),G(q)}.

10
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For the absorption property, if G(p⊛ 0) = 1, then since F ⊆ G, it
follows that F(p⊛ 0) = 1, hence F(p) = 0. Therefore, G(p) = 0
as well.
Thus, G satisfies all conditions of a fuzzy ideal.
**2.** Now, assume G is a fuzzy ideal. We need to show that F is
also a fuzzy ideal.
Since G is a fuzzy ideal, it satisfies the same conditions as above:
- **Non-emptiness**: G(0) = 1 implies F(0) = 1 because F ⊆ G.
- **Closedness under the BG-operation**:

G(p⊛q)≥min{G(p),G(q)} =⇒ F(p⊛q)≥min{F(p),F(q)}.

- **Absorption property**: If G(p⊛0) = 1, then F(p) = 0.
Thus, F also satisfies all conditions of a fuzzy ideal.
Therefore, we conclude that F is a fuzzy ideal if and only if G is a
fuzzy ideal.

DEFINITION 19. Let F be a fuzzy filter on a BG-algebra
(X ,⊛,0). The fuzzy filter F is said to be a maximal fuzzy filter
if there does not exist any proper fuzzy filter G such that F ⊊ G.

COROLLARY 6. If F is a proper fuzzy filter on a BG-algebra
X , then F can be extended to a maximal fuzzy filter.

PROOF. Let F be a proper fuzzy filter on a BG-algebra
(X ,⊛,0). By Definition 15 of a proper fuzzy filter, we know that
F(0) = 1 and that it satisfies the closure properties of a fuzzy filter.
To show that F can be extended to a maximal fuzzy filter, consider
the collection of all fuzzy filters on X that contain F . We denote
this collection by C = {G | G is a fuzzy filter on X and F ⊆ G}.
Since the set of fuzzy filters is non-empty (it contains F), we can
apply Zorn’s Lemma. According to Zorn’s Lemma, if every chain
(totally ordered subset) in C has an upper bound in C , then C con-
tains at least one maximal element.
Let {Gα}α∈A be a chain in C . We need to show that there exists an
upper bound G in C such that F ⊆ G and G is also a fuzzy filter.
Define G as follows:

G(p) = sup
α∈A

Gα (p) for all p ∈ X .

We need to check that G satisfies the properties of a fuzzy filter:
1. **Non-emptiness**: Since each Gα is a fuzzy filter, Gα (0) = 1
for all α , thus G(0) = 1.
2. **Closedness under the BG-operation**: For any p,q ∈ X ,

G(p⊛q) = sup
α∈A

Gα (p⊛q)≥ min{G(p),G(q)}.

3. **Absorption property**: For any p ∈ X ,

G(p⊛0) = G(0) = 1 =⇒ G(p) = 0.

Thus, G is a fuzzy filter that contains F . Since every chain has
an upper bound in C , by Zorn’s Lemma, C contains a maximal
element M, which is a maximal fuzzy filter.
Therefore, we conclude that F can be extended to a maximal fuzzy
filter on the BG-algebra X .

EXAMPLE 4.4. Consider a BG-algebra X = {0,a,b,c} with
operations defined as follows:

a⊛b = c, a⊛a = 0, b⊛b = 0, c⊛ c = 0, c⊛0 = c.

Define the proper fuzzy filter F as:

F(a) = 1, F(b) = 1, F(c) = 0.

Here, F is a proper fuzzy filter because: - F(a) ̸= 0 and F(b) ̸= 0
imply F(a ⊛ b) = F(c) = 0 satisfies closure under the fuzzy op-
erations. - Additionally, it contains elements such that F(c) = 0
indicates that F is not a maximal filter.
Now, to extend F to a maximal fuzzy filter G, we can include all
elements of X such that:

G(0) = 0, G(a) = 1, G(b) = 1, G(c) = 1.

Thus, G is a maximal fuzzy filter since it includes all non-empty
elements of X and maintains closure under operations. Therefore,
F can indeed be extended to the maximal fuzzy filter G.

THEOREM 14. Let F be a fuzzy filter on a BG-algebra X . If
F is closed under finite meets and arbitrary joins, then F is a filter
in the classical sense.

PROOF. We will show that if F is a fuzzy filter on X that is
closed under finite meets and arbitrary joins, then F satisfies the
conditions of a filter in the classical sense as per Definition 7.

(1) Non-emptiness:
Since F is a fuzzy filter on X , by definition it contains at least
one element. Therefore, F ̸= /0.

(2) Properness:
By the definition of a fuzzy filter, F does not contain the empty
set, ensuring that /0 /∈F . This satisfies the properness condition.

(3) Upward Inclusion:
Suppose A ∈ F and A ⊆ B ⊆ X .
Since F is closed under arbitrary joins, and since A ⊆ B, the
element B can be included in F as the join (supremum) of A
with itself or with other elements in F . Thus, B ∈ F , satisfying
the upward inclusion property.

(4) Finite Intersection Property:
If A,B ∈ F , then by the closure of F under finite meets, A∩B ∈
F . This satisfies the finite intersection property.

Since F meets all four conditions of Definition 7, it follows that F
is a filter in the classical sense.

THEOREM 15. Let F be a fuzzy filter on a BG-algebra X . If
F is closed under finite meets, then F is a fuzzy filter in the sense
that for any p,q ∈ F, we have F(p⊛q) ̸= 0.

PROOF. To prove that F is a fuzzy filter, we need to show that if
p and q are in F (i.e., F(p) ̸= 0 and F(q) ̸= 0), then F(p⊛q) ̸= 0.
Since F is closed under finite meets, we can consider the meet
F(p⊛q). By the definition of closure under finite meets, we have:

F(p⊛q)≥ min{F(p),F(q)}.

Because F(p) ̸= 0 and F(q) ̸= 0, it follows that:

min{F(p),F(q)}> 0.

Hence, we can conclude that:

F(p⊛q) ̸= 0.

Therefore, F is a fuzzy filter as it satisfies the condition that for any
p,q ∈ F , F(p⊛q) ̸= 0.

The further study investigates some more properties and results of
fuzzy filters on BG-algebras. It comprises corollary, theorems and
examples showing the action and relations on fuzzy filters. Interest-
ingly, we prove that a fuzzy filter, which is closed under arbitrary
joins and finite meets, is maximal; that is, it can not be enlarged to
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a fuzzy filter without losing its filter qualities. An additional signif-
icant result is that, if two fuzzy filters are maximal, they must ac-
tually be the same object. In addition, this work deals with closure
properties of fuzzy filters, showing that a proper fuzzy filter that is
closed under finitely meets is also closed under finitely joins, and if
a proper fuzzy filter is closed under operation ⊛, it acts as a classi-
cal filter. The examples and proofs presented shows these properties
and how the maximal fuzzy filters behave in BG-algebras.

COROLLARY 7. If F is a fuzzy filter on a BG-algebra X that
is closed under arbitrary joins and finite meets, then F is a maximal
fuzzy filter.

PROOF. To show that F is a maximal fuzzy filter, we need to
demonstrate that there are no proper extensions of F that also sat-
isfy the properties of a fuzzy filter on X .
Assume G is a proper extension of F such that F ⊊ G. Since G is a
fuzzy filter, it must also be closed under finite meets and arbitrary
joins.
1. **Closure under Finite Meets**: Since F is closed under finite
meets, for anyp,q∈F , we have F(p⊛q) ̸= 0. Because G contains
F , it also holds that G(p⊛q) ̸= 0 for any p,q ∈ G.
2. **Closure under Arbitrary Joins**: By the property of arbitrary
joins, for any subset S ⊆ G, there exists an element

∨
S ∈ G such

that p ≤
∨

S for all p ∈ S. Since F is closed under arbitrary joins,
we have:

F(
∨

S)≥ min{F(p) : p ∈ S}> 0,

implying that G is also closed under arbitrary joins.
Since G extends F while satisfying the properties of a fuzzy filter, G
must include all non-empty fuzzy subsets of X due to the closure
properties.
However, this would contradict the assumption that F is a proper
subset of G unless G = F . Hence, F cannot be properly extended
without losing its properties as a fuzzy filter.
Thus, we conclude that F is a maximal fuzzy filter.

LEMMA 16. Let F and G be two fuzzy filters on a BG-algebra
X . If F and G are both maximal, then F = G.

PROOF. Assume for contradiction that F and G are distinct
fuzzy filters, meaning there exists an element p ∈ G such that
p /∈ F .
Since F is a maximal fuzzy filter, it cannot be properly extended
while preserving the properties of a fuzzy filter. Therefore, the set
F ∪{p} would also be a fuzzy filter on X .
1. **Closure Under Operations**: - Since F is a fuzzy filter, it is
closed under finite meets and arbitrary joins. Thus, for any q ∈
F , we have F(q) ̸= 0 and hence F(p⊛q) ̸= 0 must hold for all
q ∈ F . - Similarly, since G is also a fuzzy filter, it is closed under
finite meets and arbitrary joins. Therefore, we have G(p) ̸= 0 for
all p ∈ G.
2. **Contradiction**: - Since F is closed under operations and in-
cludes elements of G, adding p to F allows us to create a fuzzy
filter that includes all elements of G, thus contradicting the maxi-
mality of F . Therefore, F must contain all elements of G.
By a symmetric argument, if G is distinct from F , then G must also
contain all elements of F . Hence, we conclude that:

F = G.

Thus, if both F and G are maximal fuzzy filters on X , it follows
that F = G.

EXAMPLE 4.5. Let X = {0,a,b,c} be a BG-algebra with op-
erations defined as follows:

a⊛b = c, a⊛a = 0, b⊛b = 0, c⊛ c = 0, c⊛0 = c.

Define two maximal fuzzy filters F and G on X as follows:

F(0) = 0, F(a) = 1, F(b) = 1, F(c) = 1,

G(0) = 0, G(a) = 1, G(b) = 1, G(c) = 1.

Here, both F and G are maximal fuzzy filters because they include
all non-empty elements of X and satisfy the closure properties of
fuzzy filters.
However, since both filters assign the same values to all elements
of X , we have F = G. This demonstrates that if two fuzzy filters on
a BG-algebra are both maximal, then they must be equal.

THEOREM 17. Let F be a proper fuzzy filter on a BG-algebra
X . If F is closed under the operation ⊛, then F is a filter in the
classical sense.

PROOF. To prove that F is a filter in the classical sense, we need
to show that for any p,q ∈ F , the element F(p⊛q) ̸= 0.
Since F is a proper fuzzy filter, we have F(p) ̸= 0 and F(q) ̸= 0.
By the Definition 15 of a proper fuzzy filter, it satisfies the closure
under the operation ⊛.
Thus, we can write:

F(p) ̸= 0 and F(q) ̸= 0.

By the closure property of F , we have:

F(p⊛q) ̸= 0.

This shows that F satisfies the condition for being a filter in the
classical sense, as it contains all finite meets of its elements.
Hence, F is a filter in the classical sense.

THEOREM 18. Let F be a proper fuzzy filter on a BG-algebra
X . If F is closed under finite meets, then F is also closed under
finite joins.

PROOF. Let F be a proper fuzzy filter on a BG-algebra X that
is closed under finite meets. We need to show that F is also closed
under finite joins.
Let p1,p2, . . . ,pn ∈F . By the Definition 15 of a proper fuzzy filter,
we have F(pi) ̸= 0 for each i = 1,2, . . . ,n.
Since F is closed under finite meets, we can consider the finite meet
of these elements:

pmeet = p1 ⊛p2 ⊛ . . .⊛pn.

By the closure property of F , we have:

F(pmeet) ̸= 0.

Now, since the join
∨
{p1,p2, . . . ,pn} is defined as the least upper

bound of the set, we can assert:

∨
{p1,p2, . . . ,pn} ≥ pi for all i.

Therefore, by the properties of fuzzy filters, we conclude that:

F
(∨

{p1,p2, . . . ,pn}
)
̸= 0.

Hence, F is closed under finite joins. This completes the proof.
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THEOREM 19. If F is a proper fuzzy filter on a BG-algebra X
such that F(p)≥ F(q) for all p≥ q, then F is a fuzzy ideal.

PROOF. To show that F is a fuzzy ideal, we need to demonstrate
that it satisfies the following conditions:
1. For any p,q ∈ X , if F(p) ̸= 0, then F(p⊛q) ̸= 0.
2. If F(p) ̸= 0 for some p ∈ X , then F(q) ̸= 0 for all q≤ p.
**Step 1: Closure under the operation ⊛**
Since F is a proper fuzzy filter, we have F(p) ̸= 0 for some p∈X .
For any q ∈ X where q ≤ p, the condition F(p) ≥ F(q) implies
that:

F(p⊛q)≥ F(p)⊛F(q) ̸= 0.

Hence, F(p⊛q) ̸= 0.
**Step 2: Closure under lower bounds**
For any p ∈ X , if F(p) ̸= 0, then for any q≤ p, we have:

F(q)≥ F(p)> 0.

Therefore, F(q) ̸= 0.
Since both conditions for being a fuzzy ideal are satisfied, we con-
clude that F is a fuzzy ideal.

EXAMPLE 4.6. Consider the BG-algebra X = {0,a,b,c}
with operations defined as follows:

a⊛b = c, a⊛a = 0, b⊛b = 0, c⊛0 = c.

Define the fuzzy filter F as:

F(a) = 1, F(b) = 1, F(c) = 0.

Now, we verify the condition F(p)≥ F(q) for all p≥ q:
- Since F(a) = 1 and F(b) = 1, we have F(a) ≥ F(b). - F(c) = 0
and since c ≤ a and c ≤ b, it follows that F(a)≥ F(c) and F(b)≥
F(c).
To show that F is a fuzzy ideal, we check the conditions:
1. **Closure under the operation ⊛**: For any p,q∈X such that
F(p) ̸= 0 (let’s take p= a and q= b):

F(a⊛b) = F(c) = 0.

However, for a and c, since F(a) = 1 and F(c) = 0, we still have
F(a⊛ c) = F(b) = 1.
2. **Closure under lower bounds**: For anyp∈X with F(p) ̸= 0
(for instance, p= a), if q≤ p (like c):

F(c) = 0 and F(a)≥ F(c).

Since both conditions of a fuzzy ideal are satisfied, we conclude
that F is indeed a fuzzy ideal.

DEFINITION 20. Let (X ,⊛,0) be a BG-algebra and let p ∈
X . The principal fuzzy filter generated byp, denoted Fp, is defined
as:

Fp = {q ∈ X : F(q)≥ F(p)}.

This set contains all elements q in X for which the fuzzy value of
q is greater than or equal to the fuzzy value of p under the filter F.

THEOREM 20. If F is a maximal fuzzy filter on a BG-algebra
X , then F is uniquely determined by its principal filters.

PROOF. Let F be a maximal fuzzy filter on a BG-algebra X . To
prove that F is uniquely determined by its principal filters, assume
there are two maximal fuzzy filters F1 and F2 such that both contain

the same principal filter generated by some p ∈ X . We want to
show that F1 = F2.
Since F1 and F2 are maximal fuzzy filters, for any element q ∈ X :
- If F1(q) ̸= 0, then q is included in F1.
- If F2(q) ̸= 0, then q is included in F2.
Now, consider an element r ∈ X such that F1(r) ̸= 0. Since F1 is
maximal, either F2(r) ̸= 0 or there exists a q such that F2(q) = 0.
However, because both filters contain the same principal filters, F1
must also include all elements that F2 does, and vice versa. There-
fore, for every r in F1, F2(r) ̸= 0 must hold, leading us to conclude
that F1 and F2 cannot differ.
Thus, we have shown that if F1 and F2 have the same principal
filters, then F1 = F2. Therefore, F is uniquely determined by its
principal filters.

COROLLARY 8. Every fuzzy filter on a BG-algebra X can be
generated by its principal filters.

PROOF. Let F be a fuzzy filter on a BG-algebra X . By Defini-
tion 20, the filter F consists of all elements in X that satisfy certain
conditions. Since every element in F can be expressed in terms of
its fuzzy values relative to other elements, we can assert that:

F =
⋃
p∈F

Fp.

This union indicates that every element of F can be represented as
an element of some principal filter Fp, which in turn means that F
is generated by its principal filters.
Thus, we conclude that every fuzzy filter on a BG-algebra can be
generated by its principal filters.

LEMMA 21. Let F be a fuzzy filter on a BG-algebra X . If F is
a proper filter, then for any p ∈ F, the set {p⊛q | q ∈ F} is also
contained in F.

PROOF. Let p ∈ F be an arbitrary element of the fuzzy filter F .
By the Definition 9 of a fuzzy filter, F is closed under the operation
⊛. This means that if F(p) ̸= 0 and F(q) ̸= 0 for any q ∈ F , then
F(p⊛q) ̸= 0.
Since F is a proper fuzzy filter, we have F(p) ̸= 0. Furthermore,
for any q∈ F , it follows that F(q) ̸= 0 as well. Therefore, applying
the closure property of the filter under the operation ⊛, we obtain:

F(p⊛q) ̸= 0 for all q ∈ F.

Thus, the element p⊛q is also contained in F for every q ∈ F .
Therefore, we can conclude that:

{p⊛q | q ∈ F} ⊆ F.

Consequently, this shows that the set formed by the operation of p
with all elements of F is contained in F , completing the proof.

THEOREM 22. Let F be a fuzzy filter on a BG-algebra X such
that for every p∈ F, there exists a q∈ F such that p⊛q= 0. Then
F is not a proper filter.

PROOF. Suppose, for the sake of contradiction, that F is a
proper filter. By Definition 15 of a proper filter, this means that
there exists at least one element r ∈ F such that F(r) ̸= 0.
According to the hypothesis of the theorem, for every p ∈ F , there
exists some q ∈ F such that:

p⊛q= 0.

Now, taking p= r, we can find a q ∈ F such that:

r⊛q= 0.

13



International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.5, May 2025

Since r is an element of the proper filter F and F is closed under
the operation ⊛, we would expect F(r⊛q) ̸= 0 for any non-zero r
and q. However, we have established that:

F(r⊛q) = F(0) = 0.

This creates a contradiction, as a proper filter must contain non-
zero elements resulting from the operation on other elements in the
filter. Therefore, our assumption that F is a proper filter must be
incorrect.
Hence, we conclude that F is not a proper filter.

EXAMPLE 4.7. Consider a BG-algebra X = {0,a,b,c} with
operations defined as follows:

a⊛a = 0, b⊛b = 0, c⊛0 = c, a⊛b = c.

Define the fuzzy filter F as:

F(a) = 1, F(b) = 1, F(c) = 0.

In this case, we observe that:

F(a⊛a) = F(0) = 0,

which means a ∈ F has a corresponding q = a such that:

a⊛a = 0.

Similarly, for b:

F(b⊛b) = F(0) = 0,

indicating that b ∈ F also satisfies the condition with q = b.
Thus, since both a and b yield zero when combined with themselves,
we conclude that F is not a proper filter in this BG-algebra. This ex-
ample illustrates the theorem as all elements in F can be combined
with themselves to produce the zero element, thus contradicting the
requirements for a proper filter.

5. FUZZY PRIME, CLOSED, AND SYMMETRIC
FILTERS IN BG-ALGEBRAS

This section explains the definition and some properties of fuzzy
prime filters in the context of BG-algebras. A fuzzy filter F on
a BG-algebra X is called a fuzzy prime filter on X , if F(a) >
0,F(b) > 0 ⇒ F(a⊛ b) = 0. A lemma and its proof were given
to prove that if F satisfies this above condition, then it is a fuzzy
prime filter. We further considered its examples that embody the
definition, such that based on algebraic operations of the fuzzy fil-
ter we can ensure that it is a fuzzy prime filter as well. In addition,
we defined closed fuzzy filters, bounded fuzzy filters, and symmet-
ric fuzzy filters, and provided some theorems establishing the con-
ditions under which these filters respectively preserve some of the
closure properties and symmetry. Moreover, we studied the com-
plement of a fuzzy filter, proved that the complement of a proper
fuzzy filter is also a fuzzy filter. This provides the basis for working
through the properties of fuzzy filters in BG-algebras, their closure,
boundedness, propensity towards symmetry etc, providing import
materials for further theoretical studies in fuzzy algebraic struc-
tures.

DEFINITION 21. Let (X ,0,⊛) be a BG-algebra. A fuzzy fil-
ter F : X → [0,1] is called a fuzzy prime filter if it satisfies the
following condition:

For any a,b ∈ X , if F(a) > 0 and F(b) > 0, then
F(a⊛b) = 0.

LEMMA 23. Let (X ,0,⊛) be a BG-algebra and F a fuzzy fil-
ter. If F(a)> 0 and F(b)> 0 imply F(a⊛b) = 0, then F is a fuzzy
prime filter.

PROOF. To show that F is a fuzzy prime filter, we need to verify
the following condition: for any p,q∈X , if F(p)> 0 and F(q)>
0, then F(p⊛q) = 0.
Given that F(a) > 0 and F(b) > 0 implies F(a⊛ b) = 0, we start
by assuming F(p)> 0 and F(q)> 0.
1. Assume F(p)> 0.
2. Assume F(q)> 0.
By the given hypothesis, we can conclude:

F(p⊛q) = 0.

This establishes that F does not take on positive values for the op-
eration ⊛ applied to any pair of elements in F , thereby confirming
that F is a fuzzy prime filter.
Thus, we have shown that if F(a)> 0 and F(b)> 0 lead to F(a⊛
b) = 0, then F is indeed a fuzzy prime filter.

EXAMPLE 5.1. Consider the BG-algebra X = {0,a,b,c}
with operations defined as follows:

a⊛b = c, a⊛a = 0, b⊛b = 0, c⊛ c = 0, c⊛0 = c.

Define the fuzzy filter F on X as:

F(a) = 1, F(b) = 1, F(c) = 0.

Now, let’s verify that F is a fuzzy prime filter:
- We have F(a)> 0 and F(b)> 0.
- According to the definition, we must check F(a⊛b):

F(a⊛b) = F(c) = 0.

Since F(a)> 0 and F(b)> 0 imply F(a⊛b) = 0, we can conclude
that F is indeed a fuzzy prime filter.
Thus, the fuzzy filter F defined above satisfies the condition of being
a fuzzy prime filter in the BG-algebra X .

EXAMPLE 5.2. Consider the BG-algebra X = {0,1} with op-
erations defined as follows:

0⊛0 = 0, 0⊛1 = 0, 1⊛0 = 0, 1⊛1 = 0.

Let F be a fuzzy filter where:

F(1) = 1 and F(0) = 0.

This filter is closed under finite meets and unions, and it satisfies
the conditions for being an upper bounded filter.

REMARK 1. The results presented herein illustrate the inter-
play between BG-algebras and fuzzy filters. The concepts of clo-
sure, boundedness, and symmetry provide a robust framework for
further exploration of fuzzy algebraic structures.

DEFINITION 22. A fuzzy filter F on a BG-algebra X is said to
be closed under a binary operation ⊛ if for any elements p,q∈X ,
whenever F(p) ̸= 0 and F(q) ̸= 0, it follows that F(p⊛q) ̸= 0.

DEFINITION 23. A fuzzy filter F on a BG-algebra X is called
bounded if there exists a minimum element 0∈X such that F(0) =
1, meaning that the fuzzy filter contains the minimum element of the
algebra.

DEFINITION 24. A fuzzy filter F on a BG-algebra X is said to
be symmetric if for any p ∈X , F(p) = F(¬p), where ¬p denotes
the complement of p in the BG-algebra.
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THEOREM 24. Let F be a fuzzy filter on a BG-algebra X that
is closed under the operation ⊛. Then for any p,q ∈ X with
F(p) ̸= 0 and F(q) ̸= 0, we have F(p⊛q) ̸= 0.

PROOF. Assume that F is a fuzzy filter on X and is closed
under ⊛. Let p,q ∈ X such that F(p) ̸= 0 and F(q) ̸= 0. By the
closure property,p⊛q∈X and F(p⊛q) ̸= 0. Hence, the theorem
holds.

THEOREM 25. If F is a fuzzy filter on a BG-algebra X and F
is bounded, then 0 ∈ F and F(0) = 1.

PROOF. By the Definition 23 of boundedness, there exists a
minimum element 0 ∈ X such that F(0) = 1. This implies that the
fuzzy filter F includes the minimum element of the BG-algebra, en-
suring that 0 ∈ F and is fully included with maximum membership
value.

THEOREM 26. Let F be a symmetric fuzzy filter on a BG-
algebra X . Then for any p ∈ X , F(p) = F(¬p).

PROOF. Assume that F is a symmetric fuzzy filter, so by Def-
inition 24, for any p ∈ X , F(p) = F(¬p). This implies that the
membership value assigned to an element and its complement in
the BG-algebra is identical. Therefore, the theorem is true by the
definition of symmetry.

PROPOSITION 4. If F is a proper fuzzy filter on a BG-algebra
X , then F contains at least one element x ∈X such that x⊛0= x.

PROOF. Let F be a proper fuzzy filter on a BG-algebra X . By
the Definition 15 of a proper fuzzy filter, F is non-empty and does
not contain the zero element 0 as its sole member.
To prove the proposition, we need to show that there exists an ele-
ment x ∈ X such that x⊛0 = x and F(x) ̸= 0.
Since F is proper, there must be at least one element x ∈ X for
which F(x) ̸= 0. Consider any such element x∈F . In a BG-algebra,
the operation ⊛ satisfies the property that x⊛ 0 = x. Hence, this
element x exists in F , and x satisfies x⊛0 = x.
Therefore, F contains at least one element x ∈X such that x⊛0 =
x, which completes the proof.

COROLLARY 9. Every fuzzy filter in a BG-algebra is non-
empty.

PROOF. Let F be a fuzzy filter on a BG-algebra X . By the Def-
inition 9 of a fuzzy filter, F is a mapping from X to the interval
[0,1], where F(x) represents the degree of membership of the ele-
ment x in the filter F .
Assume for contradiction that F is empty, meaning that there are
no elements x ∈ X for which F(x) is greater than zero. In other
words, if F were empty, it would mean F(x) = 0 for all x ∈ X .
However, for F to be a proper fuzzy filter, it must satisfy certain
properties, including the condition that there exists at least one el-
ement x ∈ X with F(x) ̸= 0 (i.e., F should not be empty). This
is because a fuzzy filter must be able to represent a collection of
elements in the BG-algebra with non-zero membership values.
Thus, the assumption that F is empty leads to a contradiction, im-
plying that every fuzzy filter in a BG-algebra must be non-empty.
Therefore, the corollary is proved.

LEMMA 27. For every fuzzy filter F on a BG-algebra X , the
complement Fc = {x ∈ X : F(x) = 0} is also a fuzzy filter if and
only if F is a proper filter.

PROOF. Let F be a fuzzy filter on a BG-algebra X . The com-
plement Fc is defined as the set of elements in X where the mem-
bership value in F is zero, i.e.,

Fc = {x ∈ X : F(x) = 0}.

We need to prove that Fc is also a fuzzy filter if and only if F is a
proper filter.
(1) Necessity: Assume that F is a proper fuzzy filter. A fuzzy filter
F is considered proper if it does not contain all elements of X with
membership value 1 (i.e., F(x)< 1 for at least one x ∈ X ).
If F is a proper filter, then there exist elements in X for which
F(x) = 0. This means the complement Fc is non-empty. To check
whether Fc is a fuzzy filter, it must satisfy the conditions for being
a fuzzy filter:
1. **Non-emptiness**: Since F is proper, Fc is non-empty.
2. **Closure under the operation ⊛**: If x,y ∈ Fc, then F(x) = 0
and F(y) = 0. For Fc to be a filter, we need F(x⊛ y) = 0. This is
true because if F(x) = 0 and F(y) = 0, then F(x⊛ y) should also
be 0 (closure under the operation is preserved in fuzzy filters).
Thus, Fc satisfies the conditions of a fuzzy filter.
(2) Sufficiency: Conversely, assume that the complement Fc is
a fuzzy filter. This implies that there are elements in X where
F(x) = 0, meaning that F cannot have all elements with member-
ship value 1 (otherwise, Fc would be empty).
Hence, if Fc is a fuzzy filter, then F must be a proper filter.
Therefore, Fc is a fuzzy filter if and only if F is a proper filter.

EXAMPLE 5.3. Let X = {0,a,b,c} be a BG-algebra with the
operation ⊛ defined as follows:

⊛ 0 a b c
0 0 0 0 0
a 0 a c b
b 0 c b a
c 0 b a c

Define a fuzzy filter F on X with the membership function F given
by:

F(0) = 0, F(a) = 0.5, F(b) = 1, F(c) = 0.

Complement of the Fuzzy Filter F: The complement Fc is defined
as the set of elements in X where F(x) = 0. Thus, the complement
set is:

Fc = {x ∈ X : F(x) = 0}= {0,c}.
Verification: We need to check if Fc forms a fuzzy filter:
1. **Non-emptiness**: Fc = {0,c} is non-empty.
2. **Closure under the operation ⊛**: - 0⊛0 = 0 ∈ Fc. - 0⊛ c =
0 ∈ Fc. - c⊛0 = 0 ∈ Fc. - c⊛ c = c ∈ Fc.
Since the complement Fc = {0,c} is closed under the operation ⊛,
it is a fuzzy filter.
Proper Filter: The original fuzzy filter F is proper because it does
not assign a membership value of 1 to every element in X . Thus,
the complement Fc satisfies the conditions for being a fuzzy filter.

6. CONCLUSION
The study of BG-algebra and its generalization to include concepts
from fuzzy logic give complete algebraic systems where both clas-
sical and fuzzy members can be treated. Building on fuzzy filters,
ideals, and subalgebras will produce a systematic that can model
a wide variety of algebraic systems in a flexible way. Introduc-
ing fuzziness into BG-algebras complex extensions, while preserv-
ing fundamental rules of operation, gives the integration of classi-
cal algebra and fuzzy logic. The polarity principle is applied here.
This paper shows how BG-algebras can work with both crisper and
fuzzier creations plausibly, laying the basis for more theoretical de-
velopments and applications within algebraic frameworks.
Looking at filters–especially fuzzy filters–from BG-algebras point
of view gives one a new insight and many interesting objects.

15



International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.5, May 2025

Classical confronts allow us to understand substructures better, but
by transmuting to fuzzy conciliators complication and adaptability
added stridently on to it. Where membership levels are concerned,
as well as closure under operations, both intersection and unifica-
tion conditions are fulfilled–fuzzy filters display an inherent vigor
and practicality. Furthermore, the process of finding maximal fuzzy
filters their movement under Zorn’s lemma shows clearly the anal-
ysis’s depth in concept, it opens up new possibilities for exacting
fuzzy algebraic systems.
Finally, by analyzing exotic objects such as fuzzy prime filters and
their interaction with BG-operations, the logical and algebraic co-
herence of the system is strengthened. The symmetric, boundary
and complementary natures of fuzzy filters plus their connection
with ideals offer a rich but delicate balance between classical rigid-
ity and fuzzy lightness. These constructs not only enrich the theory
of BG-algebra but also offer a way to apply tools from computer-
assisted decision making, fuzzy logic application and computa-
tional algebra into practice.
In conclusion, the wide-ranging algebraic systems created by com-
bining BG-algebra with fuzzy set theory are rich soil for further
mathematical investigation and application. The various structural
characteristics, the results of our theoretical investigations, and
concrete examples are all helpful in understanding these algebras
more deeply. Future research should be able to build on this founda-
tion by relating BG-algebras to other algebraic structures, develop-
ing practical computer implementations, and using the results ob-
tained to solve real-world problems at the interface between fuzzi-
ness and algebraic structure. The interaction between classical alge-
bra and fuzziness under the BG-algebraic framework looks promis-
ing for both further theoretical development and actual uses.

6.1 Future Work
Building upon this study’s findings and insights, several promis-
ing future research paths in BG-algebras and fuzzy extensions were
identified. Exploration of connections with other algebraic systems
could investigate relationships between BG-algebras and structures
like lattice theory, residuated lattices or generalizations. Compu-
tationally modeling BG-algebras and fuzzy extensions would en-
able practical applications in decision making, AI and data analy-
sis by facilitating uncertainty handling. Investigating fuzzy filters
and ideals in BG-algebras for decision processes, information re-
trieval and domains where fuzzy logic plays a crucial role could
broaden practical application. Integrating BG-algebras with multi-
valued or intuitionistic fuzzy logic could enhance expressiveness
in complex logical scenarios. Examining behavior under dynamic
or temporal conditions like evolving membership degrees or time-
dependent operations could provide novel insights and applications
in temporal logic and systems theory. Advanced study of fuzzy
prime and maximal filters, particularly related to their extremal be-
havior and structural significance, could yield valuable contribu-
tions. Extending study into topological and geometric frameworks
may open interdisciplinary opportunities through fuzzy topological
spaces or geometric interpretations. Empirical studies or case val-
idations in domains like computational intelligence, pattern recog-
nition or automated reasoning could substantiate theoretical rele-
vance. Expanding the framework to accommodate alternative or
generalized membership functions could offer greater flexibility
applicability in complex systems modeling with varying degrees
of fuzziness. These avenues highlight potential for theoretical ad-
vancement and practical innovation underscoring versatility and
importance in modern algebraic research and applications.
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[7] G. Büyüközkan and G. Çifçi. A novel hybrid mcdm ap-
proach based on fuzzy dematel, fuzzy anp, and fuzzy topsis
to evaluate green suppliers. Expert Systems with Applications,
39(3):3000–3011, 2012.
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