CFP last date
20 January 2025
Reseach Article

Deep Learning Approach for Early Stage Lung Cancer Detection

by Saleh Abunajm, Nelly Elsayed, Zag Elsayed, Murat Ozer
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 8
Year of Publication: 2024
Authors: Saleh Abunajm, Nelly Elsayed, Zag Elsayed, Murat Ozer
10.5120/ijca2024923429

Saleh Abunajm, Nelly Elsayed, Zag Elsayed, Murat Ozer . Deep Learning Approach for Early Stage Lung Cancer Detection. International Journal of Computer Applications. 186, 8 ( Feb 2024), 11-17. DOI=10.5120/ijca2024923429

@article{ 10.5120/ijca2024923429,
author = { Saleh Abunajm, Nelly Elsayed, Zag Elsayed, Murat Ozer },
title = { Deep Learning Approach for Early Stage Lung Cancer Detection },
journal = { International Journal of Computer Applications },
issue_date = { Feb 2024 },
volume = { 186 },
number = { 8 },
month = { Feb },
year = { 2024 },
issn = { 0975-8887 },
pages = { 11-17 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number8/deep-learning-approach-for-early-stage-lung-cancer-detection/ },
doi = { 10.5120/ijca2024923429 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-29T03:28:31+05:30
%A Saleh Abunajm
%A Nelly Elsayed
%A Zag Elsayed
%A Murat Ozer
%T Deep Learning Approach for Early Stage Lung Cancer Detection
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 8
%P 11-17
%D 2024
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Lung cancer is the leading cause of death among different types of cancers. Every year, the lives lost due to lung cancer exceed those lost to pancreatic, breast, and prostate cancer combined. The survival rate for lung cancer patients is very low compared to other cancer patients due to late diagnostics. Thus, early lung cancer diagnostics is crucial for patients to receive early treatments, increasing the survival rate or even becoming cancer-free. This paper proposed a deep-learning model for early lung cancer prediction and diagnosis from Computed Tomography (CT) scans. The proposed mode achieves high accuracy while considering low implementation budget. In addition, it can be a beneficial tool to support radiologists’ decisions in predicting and detecting lung cancer and its stage.

References
  1. World Cancer Research Fund, “World Cancer Research Fund International.” https://www.wcrf.org/dietandcancer/ lung-cancer-statistics.
  2. A. C. Society, “Key Statistics for Lung Cancer. How common is lung cancer?.” https://www.cancer.org/cancer/ lung-cancer/about/key-statistics.html, Last Revised: January 12, 2021.
  3. G. A. Woodard, K. D. Jones, and D. M. Jablons, “Lung cancer staging and prognosis,” Lung Cancer: Treatment and Research, pp. 47–75, 2016.
  4. S. Hammerschmidt and H. Wirtz, “Lung cancer: current diagnosis and treatment,” Deutsches A¨rzteblatt International, vol. 106, no. 49, p. 809, 2009.
  5. A. Teramoto, H. Fujita, O. Yamamuro, and T. Tamaki, “Automated detection of pulmonary nodules in pet/ct images: Ensemble false-positive reduction using a convolutional neural network technique,” Medical physics, vol. 43, no. 6Part1, pp. 2821–2827, 2016.
  6. B. Van Ginneken, A. A. Setio, C. Jacobs, and F. Ciompi, “Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans,” in 2015 IEEE 12th International symposium on biomedical imaging (ISBI), pp. 286–289, IEEE, 2015.
  7. I. Ali, G. R. Hart, G. Gunabushanam, Y. Liang, W. Muhammad, B. Nartowt, M. Kane, X. Ma, and J. Deng, “Lung nodule detection via deep reinforcement learning,” Frontiers in oncology, vol. 8, p. 108, 2018.
  8. S. Shen, S. X. Han, D. R. Aberle, A. A. Bui, andW. Hsu, “An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification,” Expert systems with applications, vol. 128, pp. 84–95, 2019.
  9. Q. Zhang, H. Wang, S. W. Yoon, D. Won, and K. Srihari, “Lung nodule diagnosis on 3d computed tomography images using deep convolutional neural networks,” Procedia Manufacturing, vol. 39, pp. 363–370, 2019.
  10. Q. Song, L. Zhao, X. Luo, and X. Dou, “Using deep learning for classification of lung nodules on computed tomography images,” Journal of healthcare engineering, vol. 2017, 2017.
  11. P. Sahu, D. Yu, M. Dasari, F. Hou, and H. Qin, “A lightweight multi-section cnn for lung nodule classification and malignancy estimation,” IEEE journal of biomedical and health informatics, vol. 23, no. 3, pp. 960–968, 2018.
  12. W. Jiang, G. Zeng, S. Wang, X. Wu, and C. Xu, “Application of deep learning in lung cancer imaging diagnosis,” Journal of Healthcare Engineering, vol. 2022, 2022.
  13. T. Ahmed, M. S. Parvin, M. R. Haque, M. S. Uddin, et al., “Lung cancer detection using ct image based on 3d convolutional neural network,” Journal of Computer and Communications, vol. 8, no. 03, p. 35, 2020.
  14. A. Rajan, A. Jayachandran, A. Abraham, and P. Peter, “Lung cancer detection using ct scans using deep learning,” 2020.
  15. K. Mehta, A. Jain, J. Mangalagiri, S. Menon, P. Nguyen, and D. R. Chapman, “Lung nodule classification using biomarkers, volumetric radiomics, and 3d cnns,” Journal of Digital Imaging, pp. 1–20, 2021.
  16. Y. Xu, A. Hosny, R. Zeleznik, C. Parmar, T. Coroller, I. Franco, R. H. Mak, and H. J. Aerts, “Deep learning predicts lung cancer treatment response from serial medical imaging,” Clinical Cancer Research, vol. 25, no. 11, pp. 3266–3275, 2019.
  17. M. Kirienko, M. Sollini, G. Silvestri, S. Mognetti, E. Voulaz, L. Antunovic, A. Rossi, L. Antiga, and A. Chiti, “Convolutional neural networks promising in lung cancer t-parameter assessment on baseline fdg-pet/ct,” Contrast Media & Molecular Imaging, vol. 2018, 2018.
  18. R. Tekade and K. Rajeswari, “Lung cancer detection and classification using deep learning,” 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 1–5, 2018.
  19. A. Hosny, C. Parmar, T. P. Coroller, P. Grossmann, R. Zeleznik, A. Kumar, J. Bussink, R. J. Gillies, R. H. Mak, and H. J. Aerts, “Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study,” PLoS medicine, vol. 15, no. 11, p. e1002711, 2018.
  20. D. Ardila, A. P. Kiraly, S. Bharadwaj, B. Choi, J. J. Reicher, L. Peng, D. Tse, M. Etemadi,W. Ye, G. Corrado, et al., “Endto- end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography,” Nature medicine, vol. 25, no. 6, pp. 954–961, 2019.
  21. Y. She, Z. Jin, J. Wu, J. Deng, L. Zhang, H. Su, G. Jiang, H. Liu, D. Xie, N. Cao, et al., “Development and validation of a deep learning model for non–small cell lung cancer survival,” JAMA network open, vol. 3, no. 6, pp. e205842– e205842, 2020.
  22. H. Yoo, K. H. Kim, R. Singh, S. R. Digumarthy, and M. K. Kalra, “Validation of a deep learning algorithm for the detection of malignant pulmonary nodules in chest radiographs,” JAMA network open, vol. 3, no. 9, pp. e2017135–e2017135, 2020.
  23. N. Elsayed, A. S. Maida, and M. Bayoumi, “Empirical activation function effects on unsupervised convolutional lstm learning,” in 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 336–343, IEEE, 2018.
  24. N. Elsayed, A. S. Maida, and M. Bayoumi, “Deep gated recurrent and convolutional network hybrid model for univariate time series classification,” arXiv preprint arXiv:1812.07683, 2018.
  25. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444, 2015.
  26. H. Kareem, “The iq-oth/nccd lung cancer dataset version 1 retrieved on 14th november 2021,” 2021.
  27. S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Computer vision, graphics, and image processing, vol. 39, no. 3, pp. 355–368, 1987.
  28. H. F. Kareem, M. S. Al-Huseiny, F. Y. Mohsen, and K. Al- Yasriy, “Evaluation of svm performance in the detection of lung cancer in marked ct scan dataset,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 21, no. 3, p. 1731, 2021.
  29. M. S. AL-Huseiny and A. S. Sajit, “Transfer learning with googlenet for detection of lung cancer,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 22, no. 2, pp. 1078–1086, 2021.
  30. H. F. Al-Yasriy, M. S. AL-Husieny, F. Y. Mohsen, E. A. Khalil, and Z. S. Hassan, “Diagnosis of lung cancer based on ct scans using cnn,” in IOP Conference Series: Materials Science and Engineering, vol. 928, p. 022035, IOP Publishing, 2020.
Index Terms

Computer Science
Information Sciences

Keywords

Transfer learning image classification CT scan deep learning