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ABSTRACT
Lung cancer is the leading cause of death among different types
of cancers. Every year, the lives lost due to lung cancer ex-
ceed those lost to pancreatic, breast, and prostate cancer com-
bined. The survival rate for lung cancer patients is very low
compared to other cancer patients due to late diagnostics. Thus,
early lung cancer diagnostics is crucial for patients to receive
early treatments, increasing the survival rate or even becom-
ing cancer-free. This paper proposed a deep-learning model for
early lung cancer prediction and diagnosis from Computed To-
mography (CT) scans. The proposed mode achieves high ac-
curacy while considering low implementation budget. In addi-
tion, it can be a beneficial tool to support radiologists’ de-
cisions in predicting and detecting lung cancer and its stage.
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1. INTRODUCTION
Cancer is a disease that can affect any part of the body and cause
uncontrolled, abnormal cell growth. The characteristics of cancer
cells are different from normal cells, such as uncontrollable growth,
invading and spreading to nearby tissues, and they are immortal.
Lung cancer is the most common cancer worldwide [1], and it is
the third most common cancer in the UK and the United States.
The leading killer of cancer in men and women is lung cancer. Al-
most 25% of all cancer deaths are caused by lung cancer. It is most
common in older people. Most people diagnosed with lung cancer
are 65 or older. A small number of individuals diagnosed with lung
cancer are younger than 45 [2]. Based on the death numbers that
statistics have shown, lung cancer is responsible for almost 25% of
deaths caused by cancer. There are five stages of cancer [3, 4]:

—Stage 0: This is the earliest Stage of cancer, and the cancer cell
still did not spread.

—Stage I: Cancer cells are small and spread into local areas but do
not spread to nearby lymph nodes or other body parts.

—Stage II: Cancer cells have spread into nearby lymph nodes or
tissues in a local area. In this Stage, cancer cells are more signif-
icant than in Stage I.

—Stage III: Cancer cells spread to a set of lymph nodes, and the
tumor growth exceeds a specific size.

—Stage IV: In this Stage, the cancer is considered metastatic; can-
cer cells have invaded other organs and spread to other parts of
the patient?s body. The acknowledgment is hidden to maintain
the anonymity of the authors and their affiliations. The full ac-
knowledgment will be added to the final version.

It is critical to continue the research to help in the early detection
of lung cancer. The American Cancer Society?s estimates for lung
cancer in the United States for 2021 are [2]:

—About 235,760 new cases of lung cancer (119,100 in men and
116,660 in women).

—About 131,880 deaths from lung cancer (69,410 in men and
62,470 in women).

Medical providers use different types of cancer scans to help di-
agnose and plan treatment. The most common types are magnetic
resonance imaging (MRI) scans, which take detailed images of the
patient?s target area in the body; computed tomography (CT) scans,
also known as CAT Scans, which create 3D images of the patient?s
target area in the body from different angles, and positron emission
tomography (PET/CT), which uses a tracer gets injected into the
patient?s body. It makes the cancerous cells appear brighter than
the non-cancerous cells.
The survival rate in each stage is different, and the earlier medi-
cal providers diagnose cancer, the higher the survival rate. While
we keep in mind that doctors do not have a guaranteed treatment
to cure cancer, diagnosing cancer at an early stage gives medical
providers more time for their treatment plans. The treatment for a
stage IV patient is particularly challenging. Therefore, computing
tools can be used to support medical providers in early lung cancer
diagnostics.
This paper proposed a Deep Convolutional Neural Network (CNN)
based model for the early prediction and detection of lung cancer
and its stages. The proposed model output testing is to be compa-
rable to real-life cases diagnosed by expert radiologists. Thus, it
can be an effective tool to assist medical providers in diagnostic
decision-making.
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Table 1. A comparison between the state-of-the-art CNN based models for detection lung cancer.
Author Year Model Dataset Imaging Type Remarks Limitations
[5] 2016 CNN 104 Japanese men and

women 104 Japanese men
and women

CT and PET images CT
and PET images

False positive was reduced
compared to their previous
study

A small number
of patients were
used in the study.

[6] 2015 OverFeat CNN LIDC dataset 865 CT
scans

CT scan Combining OverFeat
CNN with CAD indicated
remarkable improvement
in detection performance

Using OverFeat
CNN achieved
unfavorable re-
sults compared to
CAD

[7] 2018 CNN Reinforce-
ment Learning

LIDC/IDRI database
(LUNA) challenge, 888
CT scans

CT scan The model does not re-
quire preprocessed data

Small number of
CT scans

[8] 2019 Hierarchical
semantic con-
volutional neu-
ral network
(HSCNN)

LIDC-IDRI (1010 pa-
tients)

CT scan HSCNN accomplished
better performance than a
3D CNN

Semantic labels
did notcontain
nodule size, lo-
cation, or margin
spiculation

[9] 2019 VGG16, VGG19,
ResNet50,
DenseNet121,
MobileNet,
Xception, NAS-
NetMobile, and
NASNetLarge

LIDC-IDRI (1018 CT
scans/1010 patients)

CT scan DenseNet121 and Xcep-
tion have

Small sample
size better results
detecting lung
nodule used
in the study
DenseNet121 and
Xception

[10]
2017 CNN,DNN, and

SAE
LIDC-IDRI (4581 images) CT scan CNN has a better perfor-

mance compared to DNN
and SAE

Due to the
dataset?s limita-
tions, the CNN
architecture has
small layers

[11]
2018 Multi-Section

CNN
LIDC-IDRI dataset (649
patients)

CT scan It takes one hour to train
the MobileNet based
model

Small cohort used
in the study

[11]
2018 Multi-Section

CNN
LIDC-IDRI dataset (649
patients)

CT scan It takes one hour to train
the MobileNet based
model

Small cohort used
in the study

2. RELATED WORK
Medical imaging refers to several different technologies that are
used to view the human body to diagnose, monitor, or treat medi-
cal conditions. There are several types of medical imaging, such as
magnetic resonance imaging (MRI), CT scans, also known as CAT
Scans, positron emission tomography (PET/CT), X-ray, arthro-
gram, ultrasound, and myelogram. For lung cancer, a CT scan is the
recommended type of medical imaging. CT scans point out whether
abnormal growth exists in the lung. This abnormal growth could be
cancerous (malignant) or non-cancerous (benign). Therefore, radi-
ologists review CT scans to determine if cancer has developed. De-
tecting lung cancer is extremely important. However, this is chal-
lenging for radiologists as the lung nodules can be missed or even
some false-positive diagnoses. Lung cancer classification is crucial.
In deep learning, nodules classification could be based on nodules?
location, size, number, consistency, and other factors.
In 2022, Wenfa et al. [12] proposed a deep learning model to ver-
ify the prediction accuracy of lung cancer using CT images. In
their study, they used two types of images formats, ?.DICOM?
and ?.MHD? formats. One of the main highlights of their study
is false positive reduction, and they used U-Net and 3D CNN
which achieved high accuracy in false-positive nodules screen-
ing. In 2020, Tasnim Ahmad et al. [13] used 3D CNN classifier.
The proposed CNN model has two conventional layers, two max-

pooling layers, and a fully connected layer. LUNA data set was
used with one hundred (100) patients divided between training
and testing 80%, 20% respectively. The accuracy rate was 80%
on 400 images tested. In 2020, A hybrid deep-convolutional neu-
ral network-based model (LungNet) was proposed by [14] with 53
total layers. The 19089 CT scan images were used in the study,
and the data set was obtained from CancerImagingArchive.net. The
LungNet model was compared to AlexNet, and the false positive
was 0% compared to AlexNet false positive which was 6.4%.
[15] proposed a hybrid approach, a 3D CNN, and a Random For-

est. The authors use (LIDC-IDRI) dataset. The dataset has 1018
CT cases. Binary classification is used, benign and malignant. A K-
Nearest Neighbors algorithm was used to identify nodules with fea-
tures that are closest to benign or malignant. The analysis of their
study shows that the Forest model that used only Biomarkers out-
performed their novel hybrid model. In 2019, [16] used CNN and
RNN to help predict survival and measure other outcomes of pa-
tients? diagnoses with NSCLS. The authors used their CNN model
to predict survival using images prior to and post-radiation ther-
apy. Using CNN and RNN models, in their study, they were able
to track tumors and predict survival and prognosis at one and two
years of overall survival. [17] developed a CNN to classify lung
cancer lesions. [18] proposed a 3D multipath VGG-like network.
The authors chose the VGG-like model because the model trains
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faster than other models. The architecture of the model VGG-16
has fully convolutional layers.
In 2018, [19] introduced a 3D CNN model. The study aims to em-
ploy a CNN model in predicting a two years survival of NSCLC pa-
tients. Their model is gauged in contrast to random forest models.
However, the authors pointed out some limitations that the study
has, such as the prognostics knowledge refined into the CNN model
is based on past treatment options and plans and may not be suit-
able to predict prognostics for patients treated with the latest tech-
nology. [20] developed a 3D CNN model to detect cancer regions in
CT scans to predict cancer risk. Yunlang She et al. [21] developed
a deep learning model (DeepSurv) to predict survival among lung
cancer patients. DeepSurv could be used as a useful tool for pa-
tients? treatment recommendations. There are a few advantages for
DeepSurv identified in the study: (I) DeepSurv is adaptive to vari-
ables such as real-world clinical factors. (II) Flexibility when deal-
ing with complicated elements. (III) Learn and analyze censored
features. (IV) Perform better in big data analysis. The study also
indicated some limitations: (I) The excessive cost associated with
deep learning models training and validating. (II) Interpreting the
model?s prediction could be hard because the functionality of deep
learning networks is like black boxes. (III) The study lacks external
validation. In a study conducted by [10], three types of deep neural
networks were proposed. Convolutional Neural Network (CNN),
Deep Neural Network (DNN), and Stacked Autoencoder (SAE).
The limitation of this study is pointed out by the authors in that
the layers of the models are relatively small. In 2020, [22] aims to
evaluate the performance of a deep learning model to detect lung
cancer. In their study, ResNet34, a 34-layer CNN model is used to
classify images. Table 1 gives a comparison between the state-of-
the-art CNN-based models for detecting lung cancer.

3. METHODOLOGY
In this paper, we proposed a deep convolutional neural network
(CNN) model for early predicting and detecting different lung can-
cer stages.

3.1 Model architecture
Our proposed model used several convolutional layers to perform
the detection task. Table 2 shows the proposed model summary.
The table shows the layers, the corresponding filters, the activation
function, the output shape, and the number of parameters at each
layer. The rectified linear unit (ReLU) has been used to add the non-
linearity [23]. The max-pooling layer was added to prevent overfit-
ting [24]. The SoftMax activation function [25] was used because
classify three classes of lung cancer: benign, malignant, and nor-
mal. The model diagram is shown in Figure 1, where each layer’s
input and output dimensions are shown explicitly.

3.2 Dataset
We used the dataset from IQ-OTH/NCCD-Lung Cancer Dataset in
Kaggle [26]. If the nodule is highly likely to be cancerous, it is clas-
sified as malignant. If a nodule is highly unlikely to be malignant, it
is classified as benign, and it is classified as normal when there are
no signs of nodules. The dataset is divided into three classes, be-
nign, which contains 15 cases, malignant, which contains 40 cases;
and normal, which contains 55 cases. The size of the dataset is 219
MB and contains 1097 CT scan images. Benign cases contain 120
images, malignant cases contain 561 images, and normal cases con-
tain 416 images. We performed data preprocessing for the dataset
images prior to using them for the model training stage.

Fig. 1. The proposed model for lung cancer detection diagram.

3.3 Data Preprocessing
The dataset we used (IQ-OTH/NCCD-Lung Cancer)is real-world
data and contains some quality issues, missing values, inconsis-
tency, noise, and incompatible formats. Therefore, the data prepro-
cessing stage is crucial to help eliminate inconsistencies, remove
duplicates, and normalize the data.

3.3.1 Image Resizing:. All the images in the dataset were resized
to 224×224. Prior to resizing, the benign class had 120 images with
an image size of 512×512, the malignant class had one image with
a size of 404×511, 501 images with an image size of 512×512,
31 images with an image size of 512×62, 28 images with an im-
age size of 512×801, and for the images in the normal class, one
image with a size of 331×506, 415 images with an image size of
512×512.

3.3.2 Image Enhancement. Contrast Limited Adaptive His-
togram Equalization (CLAHE) is applied to enhance the contrast
of the dataset images. CLAHE is a variant of adaptive histogram
equalization in which the contrast amplification is limited, to re-
duce this problem of noise amplification. In CLAHE, the contrast
amplification in the vicinity of a given pixel value is given by the
slope of the transformation function. [27] CLAHE is a block-based
image processing. CLAHE Algorithm works on a small area of the
image called tiles, the contrast procedure is applied to each tile. Af-
ter enhancing the contrast in each tile, they are combined by using
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Table 2. The proposed CNN-based model for early prediction and detection of lung cancer
stages summary.

Layer Filters Kernel Activation Output Shape No. Param.
Input Conv2D 8 (3,3) ReLU (None,224,224,8) 224
Max-pooling2D layer (2,2) (None,112,112,8) 0
Conv2D 16 (3,3) ReLU (None, 112, 122, 16) 1168
(Max-pooling2D layer (2,2) (None, 56, 61, 16) 0
Conv2D 32 (3,3) ReLU (None, 56, 61, 32) 4640
Max-pooling2D (2,2) (None, 28, 30, 32) 0
Conv2D 64 (3,3) ReLU (None, 28, 30, 64) 18496
Max-pooling2D (2,2) (None, 14, 15, 64) 0
Flatten (None, 13440) 0
Dense (None, 24) 322584
Dense SoftMax (None,3) 75
Total parameters 347,187
Trainable parameters 347,187
Non-trainable parameters 0

Fig. 2. A flowchart of the image enhancement process using CLAHE.

Fig. 3. The input image before enhancement (on the left), and the output
enhanced image (on the right).

a resampling technique called bilinear interpolation. Bilinear in-
terpolation is used to prevent induced borderlines around the tiles.
Figure 2 is a flow chart of the image enhancement process using
CLAHE. There are five steps to enhance images using CLAHE:

(1) Each image is divided into square tiles as a two-factor vector of
a positive integer. M represents rows, columns are represented
by N, and T represents the total number of tiles. We used the
tile default tile size in OpenCV 8×8.

T = M ∗N (1)

(2) The mapping function of local histogram is calculated by:

f(xj) = (G− 1)

j∑
i=0

ti
T

(2)

where(G) represents total possible gray levels and T represents
the total of pixels in an image. The cumulative number of gray
pixels between zero and Xj is represented by:

∑j
i=0

ti
T

(3) We use the clipping point of CLAHE. Clip limit, also called
contrast-enhanced limit, is used to normalize an image and pre-
vent over-concentration in similar areas of the image. We can
use a clip limit value between zero and one. The higher the
value, the more contrast. The clip limit default value is 0.01.
The clip limit determines how many pixels are allowed in a
histogram bin. The default number of histogram bins is 256. It
is a positive integer and is used to develop a contrast-enhancing
transformation.

(4) We apply the histogram equalization to each region.

(5) To reduce the noise in the image. Median filters are used to re-
move the noise and preserve the image edges. This is essential
because the noise could lead to a false positive. Figure 3 is an
example of an input image before enhancement and the out-
put enhanced image using CLAHE. Any extra noise must be
removed to prevent any false positives due to noise presence.

3.4 Data augmentation
Data augmentation has been performed on the dataset images to
increase the dataset size and increase the problem complexity. The
following augmentations have been performed:

—Flip-top-bottom is 40%.

—Flip-left-right is 30%.

—Random brightness with a probability of 30%, minimumf actor
of 30%, and maximum factor of 1.2.

—Zoom random is 20%.

—Also, we used horizontal flip.

—The rotation range is 40.

—Shear range is 20%.

—Rescaling by 1/255.

—Height shift range is 20%.

Then, data is split into three sets 70% training set, 15% validation
set, and 15% testing set.
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Fig. 4. The confusion matrix for the proposed model to detect the lung
cancer.

Table 3. The proposed model empirical results.
Class Precision Sensitivity Specificity F1-

score
Support

Benign 98% 98% 99% 98% 321
Malignant 1.00 99% 99% 1.00 1023
Normal 98% 99% 98% 99% 772
Accuracy 99% 2116
Loss 0.17 2116
Macro 99% 99% 99% 99% 2116
Weighted 99% 99% 99% 99% 2116

Fig. 5. The proposed model training versus validation accuracies.

4. RESULTS AND DISCUSSION
Our model was built in Python 3 using TensorFlow-Keras libraries.
We have run the model on Google Colab Pro with Tesla P100-
PCIE-16GB, and 32 GB RAM. To measure the performance of our
CNN model, we used a variety of metrics.
In our experiment, the original dataset consists of 1097 CT scan im-
ages. We have increased the dataset to eight thousand 8461 images
using augmentation methods. 6345 images were used for training,
and 2116 images were used for validation. The training images
were divided into three classes; benign cases consisted of 961 im-
ages, malignant cases consisted of 3067 images, and normal cases
consisted of 2317 images. Also, the validation images were divided
into three classes; benign cases consisted of 321 images, malignant
cases consisted of 1023 images, and normal cases consisted of 772
images.
Several metrics have been used to measure our model performance.
Figure 4 shows the confusion matrix diagram for the three classes
where the True Positive (TP) indicates the number of times where
the actual value is yes (true), and the model predicted yes. False
Positive (FP) indicates the number of times where the actual value
is yes (true), and the model predicted yes. This is known as a Type-I
error. True Negative (TN) indicates the number of times the actual
value is no, and the model predicted no. False Negative (FN) in-
dicates the number of times the actual value is yes, and the model
predicted no. This is known as a Type-II error.
The accuracy of the proposed model has been calculated by:

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Fig. 6. The proposed model training versus validation loss.

The precision value that reveals how many of the predicted positive
values are actually true is calculated by:

Precision =
TP

TP + FP
(4)

The recall (sensitivity) that represents the actual output that is pre-
dicted correctly is calculated by:

Recall(Sensitivity) =
TP

TP + FN
(5)

The specificity that shows the true negative of the model by apply-
ing the following formula:

Specificity =
TN

TN + FP
(6)

Combining the recall and precision of the model’s classification
into a single metric. To maintain the balance between recall and
precision, we use the harmonic mean:

F1− Score = 2 ∗ Recall ∗ Precision

Recall+ Precision
(7)

Precision for benign, malignant, and normal cases are 98%, 1.00,
and 98%, respectively. The results of sensitivity (recall) for benign,
malignant, and normal cases are 98%, 99%, and 99%, respectively.
Specificity for benign, malignant, and normal cases are 99.55%,
99.45%, and 98.65%, respectively. F1-score results for benign, ma-
lignant, and normal cases are 0.98, 1.00, and 99%, respectively.
Measuring The macro average and the weighted average for Pre-
cision, recall, and F1-score, the output was the same 99%. The
model’s accuracy is 99.45%, and the loss is 1.75%. Figure 5 and
Figure 6 show the proposed CNN model’s accuracy and loss for
the training versus validation diagrams over the ten epochs. Table 3
shows the proposed model oveall statistical results.
In our experiment, the original dataset consists of one thousand
ninety-seven (1097) CT scan images. We have increased the dataset
to eight thousand four hundred sixty-one (8461) images using aug-
mentation methods. Six thousand three hundred forty-five (6345)
images were used for training, and two thousand one hundred six-
teen (2116) images were used for validation. The training images
were divided into three classes, benign cases consisted of nine hun-
dred sixty-one (961) images, malignant cases consisted of three
thousand sixty-seven (3067) images, and normal cases consisted
of two thousand three hundred seventeen (2317) images. Also, the
validation images were divided into three classes, benign cases con-
sisted of three hundred twenty-one (321) images, malignant cases
consisted of one thousand twenty-three (1023) images, and normal
cases consisted of seven hundred seventy-two (772) images. The
performance of the CNN model was assessed using the confusion
matrix. Table 4.4 shows the confusion matrix report. Precision for
benign, malignant, and normal cases are 98%, 1.00, and 98%, re-
spectively. The results of sensitivity (recall) for benign, malignant,
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and normal cases are 98%, 99%, and 99%, respectively. Specificity
for benign, malignant, and normal cases are 99.55%, 99.45%, and
98.65%, respectively. F1-score results for benign, malignant, and
normal cases are 0.98, 1.00, and 99%, respectively. Measuring The
macro average and the weighted average for Precision, recall, and
f1-score the output was the same 99%. The model’s accuracy is
99.45%, and the loss is 1.75%. Figure 4.5 shows the proposed CNN
model?s accuracy and loss.
We have compared our results with three different states of the art
models. Table 4 shows a comparison between our proposed model
and some of the state-of- the-art models used the same dataset (IQ-
OTH/NCCD).

5. CONCLUSION
This paper proposed a CNN-based model for early prediction and
detection of lung cancer from CT scan imaging. The model de-
tected benign, malignant, and normal cases. Detecting lung cancer
at an early stage is crucial, and this will help medical providers to
start their treatment plan, which will increase the survival rate. One
of the objectives that our model achieved is the reduction of false
positives. Moreover, the proposed model has achieved a high accu-
racy rate of 99.45%. Lung cancer is one of the most difficult cancers
diagnosed in an early stage. With the existing methods that radiol-
ogists use, the proposed model in this thesis can be a particularly
useful tool to support their decisions.
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