CFP last date
21 April 2025
Reseach Article

Machine Learning Approach for Cyberattack Detection and Prevention on IoT Networks

by Janet M. Maluki, Jimmy K.N. Macharia, Dalton Ndirangu Kaimuru
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 77
Year of Publication: 2025
Authors: Janet M. Maluki, Jimmy K.N. Macharia, Dalton Ndirangu Kaimuru
10.5120/ijca2025924613

Janet M. Maluki, Jimmy K.N. Macharia, Dalton Ndirangu Kaimuru . Machine Learning Approach for Cyberattack Detection and Prevention on IoT Networks. International Journal of Computer Applications. 186, 77 ( Apr 2025), 17-26. DOI=10.5120/ijca2025924613

@article{ 10.5120/ijca2025924613,
author = { Janet M. Maluki, Jimmy K.N. Macharia, Dalton Ndirangu Kaimuru },
title = { Machine Learning Approach for Cyberattack Detection and Prevention on IoT Networks },
journal = { International Journal of Computer Applications },
issue_date = { Apr 2025 },
volume = { 186 },
number = { 77 },
month = { Apr },
year = { 2025 },
issn = { 0975-8887 },
pages = { 17-26 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number77/machine-learning-approach-for-cyberattack-detection-and-prevention-on-iot-networks/ },
doi = { 10.5120/ijca2025924613 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-04-05T01:33:44.427100+05:30
%A Janet M. Maluki
%A Jimmy K.N. Macharia
%A Dalton Ndirangu Kaimuru
%T Machine Learning Approach for Cyberattack Detection and Prevention on IoT Networks
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 77
%P 17-26
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A key part of securing IoT networks is detecting intrusions and stopping potential attacks before they cause harm. To achieve this, various security measures have been implemented, including firewalls, intrusion detection systems, antivirus software, and organizational security policies. This study adopts a systematic approach to detecting and preventing cyberattacks in IoT networks. It examines prior research, evaluates existing intrusion detection techniques, and applies these insights to develop a more effective and adaptable detection framework. This study examines intrusion detection techniques that incorporate machine learning and statistical methods. Building on a thorough analysis of existing intrusion detection systems, it introduces a novel model that enhances multiple cyberattack detection and prevention in IoT networks. The experimental results highlight the model's strong performance, achieving an impressive 98% accuracy. It also maintains a weighted average recall of 97%, precision of 96%, and an F1-score of 96% across various attack categories, demonstrating its reliability in detecting multiple cyberattacks.

References
  1. A. N. Ayesh, “Enhancing Urban Living in Smart Cities Using the Internet of Things (IoT),” Int. Acad. J. Sci. Eng., vol. 11, no. 1, pp. 237–246, 2024, Doi: 10.9756/iajse/v11i1/iajse1127.
  2. R. Lakhani, “Cybersecurity Threats in Internet of Things (IoT) Networks: Vulnerabilities and Defense Mechanisms,” vol. 12, no. 11, pp. 25965–25980, 2023, doi: 10.18535/ijecs/v12i11.4779.
  3. Y. Lu, “Security and Privacy of Internet of Things: A Review of Challenges and Solutions,” J. Cyber Secure. Mobil., vol. 12, no. 6, pp. 813–844, 2023, doi: 10.13052/jcsm2245-1439.1261.
  4. K. Mahanta and H. B. Maringanti, “Security in the Internet of Things ( IoT ): Developing intrusion detection systems for IoT devices and networks and addressing the unique security challenges posed by this connection,” Proc. Int. Conf. Artif. Intell. 5G Commun. Netw. Technol., no. May, pp. 570–576, 2023.
  5. A. Alaa Hammad, M. Adnan Falih, S. Ali Abd, and S. Rashid Ahmed, “International Journal of Computing and Digital Systems Detecting Cyber Threats in IoT Networks: A Machine Learning Approach,” no. December 2024, doi: 10.12785/ijcds/1571020041.
  6. F. Alwahedi, A. Aldhaheri, M. A. Ferrag, A. Battah, and N. Tihanyi, “Machine learning techniques for IoT security: Current research and future vision with generative AI and large language models,” Internet Things Cyber-Physical Syst., vol. 4, no. December 2023, pp. 167–185, 2024, doi: 10.1016/j.iotcps.2023.12.003.
  7. Z. Hasan, H. R. Mohammad, and M. Jishkariani, “Machine Learning and Data Mining Methods for Cyber Security: A Survey,” Mesopotamian J. CyberSecurity, vol. 2022, no. January, pp. 47–56, 2022, doi: 10.58496/MJCS/2022/006.
  8. W. Hilal, S. A. Gadsden, and J. Yawney, “Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances,” Expert Syst. Appl., vol. 193, p. 116429, 2022, doi: 10.1016/j.eswa.2021.116429.
  9. H. Taherdoost, “Security and Internet of Things: Benefits, Challenges, and Future Perspectives,” Electron., vol. 12, no. 8, pp. 1–22, 2023, doi: 10.3390/electronics12081901.
  10. T. Sobh, “An Artificial Immune System for Detecting Network Anomalies Using Hybrid Immune Theories,” J. ACS Adv. Comput. Sci., vol. 0, no. 0, pp. 0–0, 2024, doi: 10.21608/asc.2024.258634.1021.
  11. P. Satam, “Anomaly Based Wi-Fi Intrusion Detection System,” Proc. - 2017 IEEE 2nd Int. Work. Found. Appl. Self* Syst. FAS*W 2017, pp. 377–378, 2017, doi: 10.1109/FAS-W.2017.180.
  12. J. C. S. Sicato, S. K. Singh, S. Rathore, and J. H. Park, “A comprehensive analyses of intrusion detection system for IoT environment,” J. Inf. Process. Syst., vol. 16, no. 4, pp. 975–990, 2020, doi: 10.3745/JIPS.03.0144.
  13. D. Fahrmann, L. Martin, L. Sanchez, and N. Damer, “Anomaly Detection in Smart Environments: A Comprehensive Survey,” IEEE Access, vol. 12, pp. 64006–64049, 2024, doi: 10.1109/ACCESS.2024.3395051.
  14. S. Trilles, S. S. Hammad, and D. Iskandaryan, “Anomaly detection based on Artificial Intelligence of Things: A Systematic Literature Mapping,” Internet of Things (Netherlands), vol. 25, no. April, p. 101063, 2024, doi: 10.1016/j.iot.2024.101063.
  15. M. Landauer, S. Onder, F. Skopik, and M. Wurzenberger, “Deep learning for anomaly detection in log data: A survey,” Mach. Learn. with Appl., vol. 12, no. April, p. 100470, 2023, doi: 10.1016/j.mlwa.2023.100470.
  16. M. H. Thwaini, “Anomaly Detection in Network Traffic using Machine Learning for Early Threat Detection,” Data Metadata, vol. 1, pp. 1–16, 2022, doi: 10.56294/dm202272.
  17. R. Foorthuis, On the nature and types of anomalies: a review of deviations in data, vol. 12, no. 4. Springer International Publishing, 2021. doi: 10.1007/s41060-021-00265-1.
  18. K. C. Nalavade, “Using Machine Learning and Statistical Models for Intrusion Detection,” Int. J. Comput. Appl., vol. 175, no. 31, pp. 14–21, 2020, doi: 10.5120/ijca2020920854.
  19. P. Schummer, A. del Rio, J. Serrano, D. Jimenez, G. Sánchez, and Á. Llorente, “Machine Learning-Based Network Anomaly Detection: Design, Implementation, and Evaluation,” AI, vol. 5, no. 4, pp. 2967–2983, 2024, doi: 10.3390/ai5040143.
  20. Peng Zhou, “Payload-based Anomaly Detection for Industrial Internet Using Encoder Assisted GAN,” in 2020 IEEE 6th International Conference on Computer and Communications, 2020, pp. 669–673.
  21. A. Chatterjee and B. S. Ahmed, “IoT anomaly detection methods and applications: A survey,” Internet of Things (Netherlands), vol. 19, no. June, p. 100568, 2022, doi: 10.1016/j.iot.2022.100568.
  22. B. Nawaal, U. Haider, I. U. Khan, and M. Fayaz, “Signature-Based Intrusion Detection System for IoT,” Cyber Secur. Next-Generation Comput. Technol., no. November, pp. 141–158, 2024, doi: 10.1201/9781003404361-8.
  23. A. Abbas, M. A. Khan, S. Latif, M. Ajaz, A. A. Shah, and J. Ahmad, “A New Ensemble-Based Intrusion Detection System for Internet of Things,” Arab. J. Sci. Eng., vol. 47, no. 2, pp. 1805–1819, 2022, doi: 10.1007/s13369-021-06086-5.
  24. G. Rekha, S. Malik, A. K. Tyagi, and M. M. Nair, “Intrusion detection in cyber security: Role of machine learning and data mining in cyber security,” Adv. Sci. Technol. Eng. Syst., vol. 5, no. 3, pp. 72–81, 2020, doi: 10.25046/aj050310.
  25. A. Meleshko and V. Desnitsky, “The Modeling and Detection of Attacks in Role-Based Self-Organized Decentralized Wireless Sensor Networks,” Telecom, vol. 5, no. 1, pp. 145–175, 2024, doi: 10.3390/telecom5010008.
  26. Z. Yang, Z. Sarwar, I. Hwang, R. Bhaskar, B. Y. Zhao, and H. Zheng, “Can Virtual Reality Protect Users from Keystroke Inference Attacks?,” 2023, [Online]. Available: http://arxiv.org/abs/2310.16191
  27. M. S. Hammad, R. E. N. Altarazi, R. N. Al Banna, D. F. Al Borno, and S. S. Abu-naser, “A Proposed Expert System for Diagnosis of Migraine,” vol. 7, no. 6, pp. 1–8, 2023.
  28. J. Sen and S. Mehtab, “Machine Learning Applications in Misuse and Anomaly Detection,” Secur. Priv. From a Leg. Ethical, Tech. Perspect., pp. 1–22, 2020, doi: 10.5772/intechopen.92653.
  29. I. E. Salem, M. M. Mijwil, A. W. Abdulqader, M. M. Ismaeel, A. Alkhazraji, and A. M. Z. Alaabdin, “Introduction to The Data Mining Techniques in Cybersecurity,” Mesopotamian J. CyberSecurity, vol. 2022, pp. 28–37, 2022, doi: 10.58496/MJCS/2022/004.
  30. R. R. Asaad and R. M. Abdulhakim, “The Concept of Data Mining and Knowledge Extraction Techniques,” Qubahan Acad. J., vol. 1, no. 2, pp. 17–21, 2021, doi: 10.48161/qaj.v1n2a43.
  31. C. Singh, “Machine Learning in Pattern Recognition,” Eur. J. Eng. Technol. Res., vol. 8, no. 2, pp. 63–68, 2023, doi: 10.24018/ejeng.2023.8.2.3025.
  32. M. Mohamed, A. Abdullah, A. M. Zaki, F. H. Rizk, M. M. Eid, and E. M. El El-Kenway, “Advances and Challenges in Feature Selection Methods: A Comprehensive Review,” J. Artif. Intell. Metaheuristics, vol. 7, no. 1, pp. 67–77, 2024, doi: 10.54216/jaim.070105.
  33. M. Kumar, C. Sharma, S. Sharma, N. Nidhi, and N. Islam, “Analysis of Feature Selection and Data Mining Techniques to Predict Student Academic Performance,” 2022 Int. Conf. Decis. Aid Sci. Appl. DASA 2022, no. March, pp. 1013–1017, 2022, doi: 10.1109/DASA54658.2022.9765236.
  34. I. H. Sarker, “Machine Learning: Algorithms, Real-World Applications and Research Directions,” SN Comput. Sci., vol. 2, no. 3, pp. 1–21, 2021, doi: 10.1007/s42979-021-00592-x.
  35. A. F. A. H. Alnuaimi and T. H. K. Albaldawi, “An overview of machine learning classification techniques,” BIO Web Conf., vol. 97, pp. 1–24, 2024, doi: 10.1051/bioconf/20249700133.
  36. T. ALASALI and Y. ORTAKCI, “Clustering Techniques in Data Mining: A Survey of Methods, Challenges, and Applications,” Comput. Sci., no. June 2024, doi: 10.53070/bbd.1421527.
  37. P. Shetty and S. Singh, “Hierarchical Clustering: A Survey,” Int. J. Appl. Res., vol. 7, no. 4, pp. 178–181, 2021, doi: 10.22271/allresearch.2021.v7.i4c.8484.
  38. J. Landaburu, “済無No Title No Title No Title,” J. GEEJ, vol. 7, no. 2, pp. 1–23, 2016, [Online]. Available: http://www.joi.isoss.net/PDFs/Vol-7-no-2-2021/03_J_ISOSS_7_2.pdf
  39. S. Pitafi, T. Anwar, and Z. Sharif, “A Taxonomy of Machine Learning Clustering Algorithms, Challenges, and Future Realms,” Appl. Sci., vol. 13, no. 6, 2023, doi: 10.3390/app13063529.
  40. C. A. Buckner et al., “We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists TOP 1 %,” Intech, vol. 11, no. Tourism, p. 13, 2016, [Online]. Available: https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics
  41. A. Rachwał et al., “Determining the Quality of a Dataset in Clustering Terms,” Appl. Sci., vol. 13, no. 5, pp. 1–20, 2023, doi: 10.3390/app13052942.
  42. D. Phiri, M. Simwanda, V. Nyirenda, Y. Murayama, and M. Ranagalage, “Decision tree algorithms for developing rulesets for object-based land cover classification,” ISPRS Int. J. Geo-Information, vol. 9, no. 5, pp. 1–16, 2020, doi: 10.3390/ijgi9050329.
  43. P. Dini, A. Elhanashi, A. Begni, S. Saponara, Q. Zheng, and K. Gasmi, “Applied Sciences Overview on Intrusion Detection Systems Design Exploiting Machine Learning for Networking Cybersecurity,” 2023.
  44. L. Boero, M. Cello, M. Marchese, E. Mariconti, T. Naqash, and S. Zappatore, “Statistical fingerprint-based intrusion detection system (SF-IDS),” Int. J. Commun. Syst., vol. 30, no. 10, 2017, doi: 10.1002/dac.3225.
  45. T. Lappas and K. Pelechrinis, “Data Mining Techniques for (Network) Intrusion Detection Systems,” Dep. Comput. Sci. Eng. UC Riverside, Riverside CA 92521, 2007.
  46. Y. Hu, A. Yang, H. Li, Y. Sun, and L. Sun, “A survey of intrusion detection on industrial control systems,” Int. J. Distrib. Sens. Networks, vol. 14, no. 8, 2018, doi: 10.1177/1550147718794615.
  47. M. N. Martinez and M. J. Bartholomew, “What does it ‘mean’? A review of interpreting and calculating different types of means and standard deviations,” Pharmaceutics, vol. 9, no. 2, 2017, doi: 10.3390/pharmaceutics9020014.
  48. M. R. Ahmed, S. Islam, S. Shatabda, A. K. M. Muzahidul Islam, M. Towhidul, and I. Robin, “Intrusion Detection System in Software-Defined Networks Using Machine Learning and Deep Learning Techniques-A Comprehensive Survey,” Ieee, no. December, pp. 1–47, 2023, doi: 10.36227/techrxiv. 17153213.v1.
  49. A. Goswami, G. Choudhury, H. K. Sarmah, and A. Begum, “‘Markov Chain’ - The Most Invaluable Contribution of A. A Markov Towards Probability Theory and Modern Technology: A Historical Search,” Int. J. Innov. Res. Sci. Technol., vol. 7, no. 3, 2020.
  50. S. N. Eshun and P. Palmieri, “De-anonymisation of real-world location traces: two attacks based on the hidden Markov model,” J. Locat. Based Serv., vol. 18, no. 3, pp. 272–301, 2024, doi: 10.1080/17489725.2024.2385312.
  51. A. Ahmadian Ramaki, A. Rasoolzadegan, and A. Javan Jafari, “A systematic review on intrusion detection based on the Hidden Markov Model,” Stat. Anal. Data Min., vol. 11, no. 3, pp. 111–134, 2018, doi: 10.1002/sam.11377.
  52. R. Gaharwal, P. Kumar, and U. Dwivedi, “Xournals Xournals Detection techniques for Intrusion Detection System Xournals,” vol. 01, no. 01, pp. 16–20, 2019.
  53. S. Ingale, M. Paraye, and D. Ambawade, “A Survey on Methodologies for Multi-Step Attack Prediction,” Proc. 4th Int. Conf. Inven. Syst. Control. ICISC 2020, no. Icisc, pp. 37–45, 2020, doi: 10.1109/ICISC47916.2020.9171106.
  54. M. Rabbani et al., “A review on machine learning approaches for network malicious behavior detection in emerging technologies,” Entropy, vol. 23, no. 5, pp. 1–41, 2021, doi: 10.3390/e23050529.
  55. A. Mishra, Y. I. Alzoubi, M. J. Anwar, and A. Q. Gill, “Attributes impacting cybersecurity policy development: Evidence from seven nations,” Comput. Secur., vol. 120, 2022, doi: 10.1016/j.cose.2022.102820.
  56. O. Watts, G. E. Henter, T. Merritt, Z. Wu, and S. King, “From HMMS to DNNS: Where do the improvements come from?,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., vol. 2016-May, pp. 5505–5509, 2016, doi: 10.1109/ICASSP.2016.7472730.
  57. G. Alter, “Reflections on the Intermediate Data Structure (IDS),” Hist. Life Course Stud., vol. 10, no. 3, pp. 71–75, 2021, doi: 10.51964/hlcs9570.
  58. Z. Azam, M. M. Islam, and M. N. Huda, “Comparative Analysis of Intrusion Detection Systems and Machine Learning-Based Model Analysis Through Decision Tree,” IEEE Access, vol. 11, no. June, pp. 80348–80391, 2023, doi: 10.1109/ACCESS.2023.3296444.
  59. A. Yadav, N. Thaker, D. Makwana, N. Waingankar, and P. Upadhyay, “Intruder Detection System: A Literature Review,” SSRN Electron. J., 2021, doi:10.2139/ssrn.3866777.
Index Terms

Computer Science
Information Sciences
IoT
Security
Cyberattack
Detection
Machine Learning
Algorithms

Keywords

Intrusion attacks statistics models anomalous classification clustering detection framework Internet of Things