CFP last date
21 April 2025
Reseach Article

A Heuristic K-Means-based Unsupervised Machine Learning Model for Unmanned Aerial Vehicle Mounted Reconfigurable Intelligent Surface for Enhanced 5G and Beyond Networks Performance

by Raymond Sabogu-Sumah, Opare Kwasi Adu-Boahen, James D. Gadze, Kwame Opuni-Boachie Obour Agyekum, Edmund Y. Fianko, Dennis N.A. Gookyi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 73
Year of Publication: 2025
Authors: Raymond Sabogu-Sumah, Opare Kwasi Adu-Boahen, James D. Gadze, Kwame Opuni-Boachie Obour Agyekum, Edmund Y. Fianko, Dennis N.A. Gookyi
10.5120/ijca2025924584

Raymond Sabogu-Sumah, Opare Kwasi Adu-Boahen, James D. Gadze, Kwame Opuni-Boachie Obour Agyekum, Edmund Y. Fianko, Dennis N.A. Gookyi . A Heuristic K-Means-based Unsupervised Machine Learning Model for Unmanned Aerial Vehicle Mounted Reconfigurable Intelligent Surface for Enhanced 5G and Beyond Networks Performance. International Journal of Computer Applications. 186, 73 ( Mar 2025), 1-8. DOI=10.5120/ijca2025924584

@article{ 10.5120/ijca2025924584,
author = { Raymond Sabogu-Sumah, Opare Kwasi Adu-Boahen, James D. Gadze, Kwame Opuni-Boachie Obour Agyekum, Edmund Y. Fianko, Dennis N.A. Gookyi },
title = { A Heuristic K-Means-based Unsupervised Machine Learning Model for Unmanned Aerial Vehicle Mounted Reconfigurable Intelligent Surface for Enhanced 5G and Beyond Networks Performance },
journal = { International Journal of Computer Applications },
issue_date = { Mar 2025 },
volume = { 186 },
number = { 73 },
month = { Mar },
year = { 2025 },
issn = { 0975-8887 },
pages = { 1-8 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number73/a-heuristic-k-means-based-unsupervised-machine-learning-model-for-unmanned-aerial-vehicle-mounted-reconfigurable-intelligent-surface-for-enhanced-5g-and-beyond-networks-performance/ },
doi = { 10.5120/ijca2025924584 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-03-25T22:41:34+05:30
%A Raymond Sabogu-Sumah
%A Opare Kwasi Adu-Boahen
%A James D. Gadze
%A Kwame Opuni-Boachie Obour Agyekum
%A Edmund Y. Fianko
%A Dennis N.A. Gookyi
%T A Heuristic K-Means-based Unsupervised Machine Learning Model for Unmanned Aerial Vehicle Mounted Reconfigurable Intelligent Surface for Enhanced 5G and Beyond Networks Performance
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 73
%P 1-8
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper investigates the use of Reconfigurable Intelligent Surfaces (RIS) installed on Unmanned Aerial Vehicles (UAVs) for a Non-Orthogonal Multiple Access (NOMA) mobile cellular system coverage extension and sum rate maximization. The UAV only acts as a medium to mount the RIS and therefore does not expend any other energy aside from that used to keep it flying. The study formulates a non-convex optimization problem to maximize the sum rate of the NOMA Cellular system by optimizing the transmit power and the location of the UAV. Due to the complexity of the formulated optimization problem, the study devised a heuristic clustering model using the Angle of Arrival (AoA) of User Equipment (UEs) signals at the Base Station (BS). The simulation results show that the use of the UAV-RIS system improves the coverage probability of the 5G and B5G network. Further, the proposed heuristic clustering technique improves the system sum rate between 8.3 to 87% depending on the transmit power of the BS.

References
  1. M. D. Renzo et al.,,, Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come, EURASIP J. Wirel. Commun. Netw., vol. 2019:129, 2019.
  2. E. Basar,,, Transmission through large intelligent surfaces: A new frontier in wireless communications, in Proc. Eur. Conf. Netw. Commun. (EuCNC), Valencia, Spain, Jun. 2019, pp. 1–6. [Online]. Available: https://arxiv.org/pdf/1902.08463.pdf.
  3. E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. -S. Alouini and R. Zhang,,, Wireless Communications Through Reconfigurable Intelligent Surfaces, in IEEE Access, vol. 7, pp. 116753-116773, 2019, doi: 10.1109/ACCESS. 2019.2935192.
  4. M. Di Renzo, H. Haas and P. M. Grant, Spatial modulation for multiple-antenna wireless systems: A survey,,, IEEE Commun. Mag., vol. 49, no. 12, pp. 182-191, Dec. 2011.
  5. N. Kaina, M. Dupr´e, G. Lerosey and M. Fink,,, Shaping complex microwave fields in reverberating media with binary tunable metasurfaces, Sci. Rep., vol. 4, no. 1, Oct. 2014.
  6. X. Xiong, J. Chan, E. Yu, N. Kumari, A. A. Sani, C. Zheng, et al.,,, Customizing indoor wireless coverage via 3D-fabricated reflectors,,, Proc. 4th ACM Int. Conf. Syst. for Energy-Efficient Built Environ., 2017.
  7. C. Liaskos, A. Tsioliaridou, S. Nie, A. Pitsillides, S. Ioannidis and I. Akyildiz,,, Modeling simulating and configuring programmable wireless environments for multi-user multiobjective networking, arXiv:1812.11429, Dec. 2018, [online] Available: https://arxiv.org/abs/1812.11429.
  8. Emil Bj¨ornson, Henk Wymeersch, Bho Matthiesen, Petar Popovski, Luca Sanguinetti, and Elisabeth de Carvalho,,, Reconfigurable Intelligent Surfaces: A Signal Processing Perspective With Wireless Applications, arXiv:2102.00742v2 [eess.SP] 31 Dec 2021.
  9. O. Tsilipakos et al.,,, Toward intelligent metasurfaces: The progress from globally tunable metasurfaces to softwaredefined metasurfaces with an embedded network of controllers, Advanced Optical Materials, no. 2000783, 2020.
  10. B. Assouar et al.,,, Acoustic metasurfaces, Nature Reviews Materials, vol. 3, pp. 460–472, 2018.
  11. S. Zeng, H. Zhang, B. Di, Z. Han and L. Song,,, Reconfigurable Intelligent Surface (RIS) Assisted Wireless Coverage Extension: RIS Orientation and Location Optimization, in IEEE Communications Letters, vol. 25, no. 1, pp. 269-273, Jan. 2021, doi: 10.1109/LCOMM.2020.3025345.
  12. M. Misbah, Z. Kaleem, W. Khalid, C. Yuen and A. Jamalipour,,, Phase and 3-D Placement Optimization for Rate Enhancement in RIS-Assisted UAV Networks, in IEEE Wireless Communications Letters, vol. 12, no. 7, pp. 1135-1138, July 2023, doi: 10.1109/LWC.2023.3263224.
  13. C. Liu et al.,,, Reconfigurable Intelligent Surface Assisted High-Speed Train Communications: Coverage Performance Analysis and Placement Optimization, in IEEE Transactions on Vehicular Technology vol. 73, no. 3, pp. 3750-3766, March 2024, doi: 10.1109/TVT.2023.3325627.
  14. E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M.-S. Alouini, and R. Zhang,,, Wireless Communications Through Reconfigurable Intelligent Surfaces,IEEE Access, vol. 7, pp. 116 753–116 773, 2019.
  15. M. Mozaffari, W. Saad, M. Bennis, and M. Debbah,,, Mobile unmanned aerial vehicles (UAVs) for energy-efficient internet of things communications, IEEE Transactions onWireless Communications, vol. 16, no. 11, pp. 7574–7589, Nov 2017.
  16. Yang, L., Yang, Y., Hasna, M. O., and Alouini, M.-S.,,, Coverage, Probability of SNR Gain, and DOR Analysis of RISAided Communication Systems, IEEE Wireless Communications Letters, 1–1. doi:10.1109/lwc.2020.2987798.
  17. Mohamed A. Elmossallamy, Hongliang Zhang, Lingyang Song, Karim Seddik, Zhu Han, and Geoffrey Li,,, Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges and Opportunities, IEEE Trans. on Cognitive Communications and Networking, V9l. 6, No. 3, September 2020.
  18. D. T. Ngo, S. Khakurel, and T. Le-Ngoc,,, Joint sub-channel assignment and power allocation for OFDMA femtocell networks,,, IEEE Trans. Wireless Commun., vol. 13, no. 1, pp. 342–355, Jan. 2014.
  19. L. Cao, H. Yin, X. Pei and L. Tan,,, RIS with Practical Reflection Coefficients: Modeling and Experimental Measurements, 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, United Kingdom, 2024, pp. 1-5, doi: 10.23919/EuCAP60739.2024.10501671.
  20. C. Zhang, W. Yao, Y. Zuo, J. Gui and C. Zhang,,, Multi- Objective Optimization of Dynamic Communication Network for Multi-UAVs System, in IEEE Transactions on Vehicular Technology, vol. 73, no. 3, pp. 4081-4094, March 2024, doi: 10.1109/TVT.2023.3323382.
  21. J. Liu, M. Sheng, R. Lyu and J. Li,,, Performance Analysis and Optimization of UAV Integrated Terrestrial Cellular Network, in {IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1841-1855, April 2019, doi: 10.1109/JIOT.2018.2878802.
  22. Wang, Y. Liu, S. Niu and H. Song,,, Extensive Throughput Enhancement For 5G-Enabled UAV Swarm Networking, in IEEE Journal on Miniaturization for Air and Space Systems, vol. 2, no. 4, pp. 199-208, Dec. 2021, doi: 10.1109/JMASS.2021.3067861.
  23. D. Kim, S. Kwon, H. Jung and I. -H. Lee,,, Deep Learning-Based Resource Allocation Scheme for Heterogeneous NOMA Networks, in IEEE Access, vol. 11, pp. 89423- 89432, 2023, doi: 10.1109/ACCESS.2023.3307407.
  24. R. Tang, J. Cheng and Z. Cao,,, Joint placement design admission control and power allocation for NOMA-based UAV systems, IEEE Wireless Commun. Lett., vol. 9, no. 3, pp. 385- 388, Mar. 2020.
  25. Xinfu Liu and Ping Lu,,, Solving Non-Convex Optimal Control Problems by Convex Optimization, in Journal of Guidance, Control, and Dynamics, Vol. 37, No. 3, 2014, pp. 750- 765, doi: 10.2514/1.62110.
  26. Cui, Z. Ding, P. Fan and N. Al-Dhahir,,, Unsupervised Machine Learning-Based User Clustering in Millimeter-Wave- NOMA Systems, in IEEE Transactions on Wireless Communications, vol. 17, no. 11, pp. 7425-7440, Nov. 2018, doi: 10.1109/TWC.2018.2867180.
  27. Y. Lin, K. Wang and Z. Ding,,, Unsupervised Machine Learning-Based User Clustering in THz-NOMA Systems, in IEEE Wireless Communications Letters, vol. 12, no. 7, pp. 1130-1134, July 2023.
  28. Sediyono, Eko et al.,,, Leader election of dynamic wireless intelligent control machine in sensor network distributed processing. J. King Saud Univ. Comput. Inf. Sci. 34 (2022): 9146- 9162.
  29. J. Cui, Z. Ding, P. Fan and N. Al-Dhahir,,, Unsupervised Machine Learning-Based User Clustering in Millimeter-Wave- NOMA Systems, in IEEE Transactions on Wireless Communications vol. 17, no. 11, pp. 7425-7440, Nov. 2018, doi: 10.1109/TWC.2018.2867180.
  30. A. Goldsmith,,, Wireless communications, Cambridge university press, 2005.
  31. S. Rohde and C. Wietfeld,,, Interference aware positioning of aerial relays for cell overload and outage compensation, in 2012 IEEE Vehicular Technology Conference (VTC Fall), Sept 2012, pp. 1–5.
  32. Bjornson, O. Ozdogan and E. G. Larsson,,, Reconfigurable Intelligent Surfaces: Three Myths and Two Critical Questions, in IEEE Communications Magazine, vol. 58, no 12, pp. 90-96, December 2020.
Index Terms

Computer Science
Information Sciences
UAV
RIS
Heuristic K-means
clustering

Keywords

Machine Learning NOMA 5G B5G Power Domain NOMA Sum Rate AoA Coverage Probability