CFP last date
21 April 2025
Reseach Article

Integrating K-Means Clustering with PoA Blockchain and IPFS for Clustered Data Synchronization: The OriBloX CDSF Approach

by Edy Saputro, Mustafid, Jatmiko Endro Suseno
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 71
Year of Publication: 2025
Authors: Edy Saputro, Mustafid, Jatmiko Endro Suseno
10.5120/ijca2025924561

Edy Saputro, Mustafid, Jatmiko Endro Suseno . Integrating K-Means Clustering with PoA Blockchain and IPFS for Clustered Data Synchronization: The OriBloX CDSF Approach. International Journal of Computer Applications. 186, 71 ( Mar 2025), 11-18. DOI=10.5120/ijca2025924561

@article{ 10.5120/ijca2025924561,
author = { Edy Saputro, Mustafid, Jatmiko Endro Suseno },
title = { Integrating K-Means Clustering with PoA Blockchain and IPFS for Clustered Data Synchronization: The OriBloX CDSF Approach },
journal = { International Journal of Computer Applications },
issue_date = { Mar 2025 },
volume = { 186 },
number = { 71 },
month = { Mar },
year = { 2025 },
issn = { 0975-8887 },
pages = { 11-18 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number71/integrating-k-means-clustering-with-poa-blockchain-and-ipfs-for-clustered-data-synchronization-the-oriblox-cdsf-approach/ },
doi = { 10.5120/ijca2025924561 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-03-06T21:09:24.893501+05:30
%A Edy Saputro
%A Mustafid
%A Jatmiko Endro Suseno
%T Integrating K-Means Clustering with PoA Blockchain and IPFS for Clustered Data Synchronization: The OriBloX CDSF Approach
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 71
%P 11-18
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Efficient data synchronization in distributed systems presents significant challenges, as centralized solutions often face limitations in scalability, bandwidth efficiency, and resilience to single points of failure. Existing blockchain and decentralized storage technologies struggle to manage frequent data updates effectively. To address these issues, OriBloX CDSF integrates K-Means clustering (optimized with the Elbow method), TF-IDF analysis, Hyperledger Besu (using QBFT PoA consensus), and IPFS to deliver a secure, scalable, and decentralized synchronization framework. Its selective synchronization mechanism optimizes bandwidth usage by retrieving only updated cluster files, reducing unnecessary data transfers by up to 70%. Using the Amazon product catalog dataset, the framework demonstrated robust clustering performance, with the Elbow method consistently identifying optimal clusters and silhouette scores reaching up to 0.114, reflecting well-separated and meaningful groupings. OriBloX’s design ensures efficient metadata synchronization, scalability, and fault tolerance, making it a reliable solution for distributed ecosystems.

References
  1. Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
  2. Ethereum Foundation. (n.d.). Proof of Authority (PoA). Retrieved from https://ethereum.org
  3. Lloyd, S. (1982). Least Squares Quantization in PCM. IEEE Transactions on Information Theory.
  4. Hyperledger. (n.d.). Hyperledger Besu Documentation. Retrieved from https://besu.hyperledger.org/
  5. Benet, J. (2014). IPFS - Content Addressed, Versioned, P2P File System.
  6. Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed Systems: Concepts and Design (5th ed.). Addison-Wesley.
  7. Kaggle. (n.d.). Amazon Product Dataset. Retrieved from https://kaggle.com/
  8. Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press.
  9. Tanenbaum, A. S., & Steen, M. V. (2007). Distributed Systems: Principles and Paradigms (2nd ed.). Prentice Hall.
  10. Wood, G. (2014). Ethereum: A Secure Decentralised Generalised Transaction Ledger. Ethereum Project Yellow Paper.
  11. Ali, M., Nelson, J., Shea, R., & Freedman, M. J. (2020). Blockstack: A Global Naming and Storage System Secured by Blockchains. USENIX ATC.
  12. Alsabti, K., Ranka, S., & Singh, V. (1998). An efficient K-Means clustering algorithm. Proc. of IPPS/SPDP Workshops.
  13. Baliga, A. (2017). Understanding blockchain consensus models. Persistent Systems, 1–14.
  14. Chen, Y., & Chen, M. S. (2009). An efficient and scalable algorithm for global clustering of parallel distributed data mining. IEEE Transactions on Knowledge and Data Engineering, 21(5), 731–744.
  15. Guo, W., Shi, R., Luo, Y., & Pan, Z. (2018). A decentralized storage and access mechanism for IoT data based on IPFS and blockchain. Sensors, 18(8), 2831.
  16. Li, Z., Yang, C., Wang, H., & Liu, L. (2020). A distributed data storage and update mechanism with blockchain for IoT devices. IEEE Internet of Things Journal, 7(5), 3966–3978.
  17. Wei, C., Zhu, Y., & Qi, J. (2019). A blockchain-based secure storage and sharing model for supply chain big data. Information Sciences, 511, 204–216.
  18. Xu, X., Weber, I., Staples, M., et al. (2019). A taxonomy of blockchain-based systems for architecture design. IEEE ICBC, 358–366.
  19. Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2018). Blockchain challenges and opportunities: A survey. International Journal of Web and Grid Services, 14(4), 352–375.
Index Terms

Computer Science
Information Sciences
Security
Algorithms
Data Synchronization
Distributed Systems
Blockchain Technology
Cloud Computing
Fault Tolerance
Decentralization

Keywords

K-Means Clustering TF-IDF Elbow Method Blockchain Proof of Authority QBFT Hyperledger Besu IPFS Data Synchronization Distributed Systems Decentralization Fault Tolerance Smart Contracts.