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ABSTRACT 
Efficient data synchronization in distributed systems presents 

significant challenges, as centralized solutions often face 

limitations in scalability, bandwidth efficiency, and resilience 

to single points of failure. Existing blockchain and 

decentralized storage technologies struggle to manage frequent 

data updates effectively. To address these issues, OriBloX 

CDSF integrates K-Means clustering (optimized with the 

Elbow method), TF-IDF analysis, Hyperledger Besu (using 

QBFT PoA consensus), and IPFS to deliver a secure, scalable, 

and decentralized synchronization framework. Its selective 

synchronization mechanism optimizes bandwidth usage by 

retrieving only updated cluster files, reducing unnecessary data 

transfers by up to 70%. Using the Amazon product catalog 

dataset, the framework demonstrated robust clustering 

performance, with the Elbow method consistently identifying 

optimal clusters and silhouette scores reaching up to 0.114, 

reflecting well-separated and meaningful groupings. OriBloX’s 

design ensures efficient metadata synchronization, scalability, 

and fault tolerance, making it a reliable solution for distributed 

ecosystems. 
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1. INTRODUCTION 

1.1 Background 
Modern data-driven ecosystems often operate across 

geographically distributed nodes, requiring timely and accurate 

access to shared information. Centralized architecture, while 

simpler to implement, faces significant challenges such as 

limited scalability, single points of failure, and inefficient 

bandwidth usage. These limitations become even more 

pronounced as datasets grow in complexity and size, 

particularly when handling dynamic and text-rich information 

such as product descriptions or customer reviews. 

One promising solution to overcome these challenges is the use 

of blockchain technology. Blockchain offers a decentralized 

approach by providing an immutable ledger for metadata 

storage, supported by robust consensus mechanisms [10]. 

Unlike centralized systems, blockchain ensures data integrity 

and prevents single points of failure. However, while 

blockchain excels at securely storing metadata, it is impractical 

for large datasets due to high on-chain storage costs and limited 

performance scalability [10]. 

To address the issue of storing large datasets, decentralized file 

systems like IPFS (InterPlanetary File System) have been 

developed. IPFS complements blockchain by offering off-

chain, content-addressable storage that reduces on-chain 

overhead [5]. However, while IPFS is efficient for storage, it 

lacks robust mechanisms to synchronize frequently updated or 

partially changed datasets across distributed nodes, which is a 

critical requirement in modern ecosystems. 

Building on these advancements, OriBloX CDSF (Clustered 

Data Synchronization Framework) combines the strengths of 

blockchain, IPFS, and clustering techniques to create an 

integrated solution. By leveraging K-Means clustering 

(optimized via the Elbow method) and TF-IDF text analysis, 

OriBloX enables efficient organization of text-based datasets 

[3], [8]. This data is securely synchronized across nodes using 

Hyperledger Besu’s permissioned blockchain with QBFT 

(Quorum Byzantine Fault Tolerance) consensus and stored off-

chain using IPFS [4], [10]. Furthermore, OriBloX introduces a 

selective synchronization mechanism, allowing nodes to fetch 

only updated or relevant cluster files, thereby reducing 

bandwidth usage and improving efficiency. This hybrid 

approach offers a scalable, secure, and fault-tolerant solution 

for distributed data synchronization. 

1.2 Problem statement 
Modern distributed environments operate under heterogeneous 

conditions, with nodes varying in network capacities, storage 

resources, and processing power. Despite these variations, 

timely and consistent access to shared information remains 

critical. Traditional centralized solutions often lead to single 

points of failure and lack the scalability and fault tolerance 

required for data-intensive applications [9]. This issue is further 

exacerbated by the increasing volume and velocity of textual 

data, such as product descriptions and customer reviews, 

necessitating efficient clustering techniques for semantic 

grouping [8]. 

Blockchain technology offers a decentralized approach to 

secure metadata storage, yet it is unsuitable for storing large 

datasets due to excessive costs and performance constraints 

[10]. Similarly, while IPFS (InterPlanetary File System) 

enables scalable off-chain storage and decentralized data 

access, it lacks robust synchronization mechanisms for 

frequently updated or partially modified datasets [5]. 
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The challenge becomes more complex in scenarios requiring 

selective updates, where nodes need only specific subsets of 

data, such as individual product clusters. Current systems force 

nodes to re-download entire datasets for minor changes, 

resulting in inefficient bandwidth usage and operational 

overhead. This limitation hinders scalability and 

responsiveness in real-time or near-real-time applications. 

1.3 Objective 
To address these challenges, this research proposes the 

OriBloX CDSF framework, which integrates K-Means 

clustering, TF-IDF analysis, Hyperledger Besu (using QBFT 

PoA consensus), and IPFS to provide a scalable and efficient 

solution. The research objectives are to: 

1. Develop an efficient clustering mechanism for text-based 

datasets using K-Means and TF-IDF. 

2. Securely manage clustering metadata through a 

permissioned blockchain using QBFT consensus. 

3. Reduce on-chain storage costs by leveraging IPFS for 

scalable off-chain data distribution. 

4. Implement a selective synchronization mechanism to 

minimize bandwidth usage by fetching only updated or 

relevant cluster files. 

5. Ensure high fault tolerance and scalability, enabling 

robust performance even under intermittent node failures. 

2. RELATED WORK 
Efficient data management in distributed systems has led to 

significant advancements in blockchain and decentralized 

storage technologies, clustering algorithms, and hybrid 

frameworks. OriBloX CDSF builds on these innovations to 

address critical gaps in scalability, fault tolerance, and 

synchronization efficiency. 

2.1 Blockchain and decentralized storage 

for data management 
Blockchain technology, initially designed for decentralized 

financial systems [1], has evolved into enterprise-grade 

platforms like Hyperledger Besu, supporting permissioned 

environments with robust governance [4]. Proof of Authority 

(PoA) consensus mechanisms significantly reduce 

computational overhead compared to Proof of Work [13], [18], 

making them ideal for metadata synchronization in distributed 

systems. 

To address the limitations of on-chain storage, the 

InterPlanetary File System (IPFS) provides decentralized, 

content-addressable storage, reducing blockchain storage 

overhead [5]. By enabling selective retrieval of data via 

Content Identifiers (CIDs), IPFS enhances scalability and 

bandwidth efficiency [11]. Additionally, its versioning and 

immutability features ensure a transparent update history, 

which is particularly useful for dynamic datasets. OriBloX 

CDSF combines PoA consensus with IPFS for secure, scalable 

metadata synchronization and efficient off-chain storage, 

addressing the limitations of existing solutions. 

2.2 Clustering and synchronization 

techniques in distributed Systems 
K-Means clustering, widely used for its simplicity and 

efficiency, enables the discovery of meaningful patterns in 

large datasets [3]. TF-IDF enhances clustering precision by 

emphasizing term importance and reducing noise from 

irrelevant words [8]. While distributed implementations of K-

Means [12], [14] improve computational efficiency, they often 

rely on centralized coordination and lack mechanisms for 

secure synchronization of cluster outputs. 

Synchronization remains a longstanding challenge in 

distributed systems [9]. Traditional replication protocols ensure 

consistency but fall short in optimizing bandwidth usage and 

handling dynamic datasets. Selective updates, which fetch only 

the changed portions of data, significantly reduce bandwidth 

requirements [16]. OriBloX CDSF addresses these challenges 

by integrating clustering with blockchain and IPFS, 

implementing selective synchronization mechanisms to fetch 

only updated cluster files. This approach ensures efficient, 

secure, and synchronized clustering in distributed ecosystems. 

2.3 Gaps addressed by OriBloX CDSF 
Despite advancements in blockchain, IPFS, and clustering, 

several critical gaps remain: 

1. Text-Focused Clustering: Existing frameworks often 

prioritize numeric data types or supervised learning 

algorithms, leaving text-based clustering applications 

underexplored [8], [19]. This gap is particularly 

significant given the prevalence of text-rich datasets in 

industries such as e-commerce and social media analytics. 

2. End-to-End Framework: Few solutions provide an 

integrated pipeline combining clustering, blockchain 

metadata storage, and off-chain data synchronization. For 

example, hybrid blockchain-IPFS approaches [17], [19] 

highlight the potential but fail to address selective 

synchronization and clustering for dynamic datasets. 

3. Robust Fault Tolerance: Research on fault tolerance in 

permissioned blockchain environments is limited. Most 

studies focus on public blockchain fault tolerance [1], 

[13], neglecting the unique challenges posed by frequent 

updates in distributed clusters. 

OriBloX CDSF addresses these gaps by integrating K-Means 

clustering, TF-IDF analysis, PoA consensus, and IPFS with 

selective synchronization. This unified framework ensures 

scalable, secure, and efficient data management in distributed 

ecosystems, overcoming the limitations of existing solutions 

[5], [15]. 

3. METHODOLOGY 

3.1 OriBloX CDSF design and workflow 
OriBloX CDSF integrates K-Means clustering, TF-IDF 

analysis, Hyperledger Besu (using QBFT PoA consensus), and 

IPFS to enable secure, scalable, and decentralized data 

synchronization. The workflow involves several stages: 

1. Data Preprocessing: Cleaning and normalizing raw 

datasets, converting text into TF-IDF feature vectors. 

2. Clustering: Using the Elbow Method to optimize cluster 

formation and generating unique Cluster IDs with SHA-

256. 

3. Metadata Management: Updating cluster metadata on-

chain using smart contracts for secure synchronization. 

4. Selective Synchronization: Fetching only updated data 

via IPFS, reducing bandwidth usage and ensuring 

consistent synchronization. 
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Fig 1: OriBloX CDSF workflow diagram 

3.2 Data preprocessing and feature 

extraction 
The Amazon product catalog dataset from Kaggle, containing 

attributes such as titles, descriptions, and categories, serves as 

the input. Data preprocessing involves cleaning missing 

entries, normalizing text fields, and scaling numerical attributes 

for uniformity. Text preprocessing includes tokenization, 

stopword removal, and stemming to standardize terms. These 

processes are executed by Electron Nodes, ensuring consistent 

data preparation across nodes. TF-IDF transformation converts 

textual data into feature vectors, with optional dimensionality 

reduction using PCA for computational efficiency. 

The Amazon product catalog dataset from Kaggle was selected 

for this study due to its large volume of textual data and diverse 

product categories, making it an ideal benchmark for 

evaluating text-based clustering approaches. This dataset 

includes rich semantic attributes (e.g., product titles, 

descriptions, and categories), which align well with TF-IDF-

based feature extraction and K-Means clustering techniques. 

Additionally, this dataset represents a real-world e-commerce 

environment, where efficient data synchronization and 

distributed clustering are critical for applications like product 

recommendations, inventory management, and personalized 

search results. 

Given the complexity and scalability of the dataset, OriBloX 

CDSF’s performance on this benchmark provides robust 

evidence of its applicability in real-world large-scale 

distributed environments. While alternative datasets could 

further validate the model’s generalizability, the current 

evaluation focuses on demonstrating core clustering efficiency 

and synchronization performance. 

3.3 Clustering process 
K-Means clustering optimizes cluster formation using the 

Elbow Method to evaluate WCSS and determine the optimal k 

value. Centroids are initialized using k-means++ and iteratively 

refined until convergence. Cluster IDs are generated by hashing 

centroid vectors (using SHA-256) and are used to track clusters 

across IPFS and QBFT. Each cluster is saved as a separate 

JSON file (e.g., cluster_shirt.json) for efficient management 

and retrieval. 

 

Fig 2: OriBloX CDSF cluster id generation 

• Compute centroid vectors for each cluster. 

• Hash these vectors use SHA-256 to generate unique 

Cluster IDs, for tracking clusters across IPFS and QBFT. 

• After generating clusters, save each cluster to a separate 

file: 

- cluster_shirt.json 

- cluster_jacket.json 

- cluster_pants.json 

• Each file represents a unique Cluster ID. 

3.4 Off-Chain storage via IPFS 
OriBloX CDSF leverages IPFS (InterPlanetary File System) to 

store cluster data off-chain, ensuring decentralized and tamper-

resistant storage. Each cluster file (e.g., cluster_shirt.json) 

contains product IDs, centroids, and summary statistics. Instead 

of storing large data directly on the blockchain, IPFS generates 

immutable Content Identifiers (CIDs), which serve as unique 

references to each stored cluster. 

3.4.1 Storage and Retrieval Process 
1. Cluster File Creation 

• After clustering, each dataset is stored in a JSON format. 

• These files contain clustered product data, metadata, and 

centroids. 

2. IPFS CID Generation 

• Each file is added to IPFS using the ipfs add command. 

• IPFS assigns a unique CID, representing the file’s content 

hash using: 

ipfs add cluster_shirt.json 

Output: QmXkY...8H3 

3. Decentralized Retrieval 

• Nodes retrieve cluster files using: 

ipfs get <CID> 

• Since IPFS follows content-based addressing, the same 

CID always retrieves the exact file. 

3.4.2 Handling Data Updates 
1. New Cluster Versions 

• When cluster data is updated, a new CID is generated 

since IPFS assigns hashes based on content. 

ipfs add cluster_shirt_updated.json 

Output: QmNewUpdatedCID 

• The updated CID replaces the previous one in the 

blockchain. 

2. Version Control 

• Old versions remain accessible unless they are removed 

from the IPFS network. 

• OriBloX nodes can fetch previous cluster states if needed. 

3.5 Metadata management and selective 

synchronization 
OriBloX smart contracts manage metadata for clusters by 

mapping Cluster IDs to CIDs and associated metadata (e.g., 

timestamps, origin nodes). Metadata updates are validated 

using QBFT consensus, ensuring tamper-proof records. 

Selective synchronization involves: 

1. Comparing local and on-chain CIDs to identify updated 

files. 

2. Fetching updated data via IPFS using ipfs get <CID>. 

3. Replacing or merging files locally, ensuring consistent 

cluster updates across nodes. 
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To illustrate metadata updates, below is a pseudocode 

representation of the OriBloX smart contract operations: 

// OriBloX Smart Contract for Metadata Management 

 

contract OriBloXCluster { 

    mapping(string => string) private clusterCID; 

    mapping(string => string) private metadata; 

 

    function updateCluster(string memory clusterId, string 

memory cid, string memory meta) public { 

        clusterCID[clusterId] = cid; 

        metadata[clusterId] = meta; 

    } 

 

    function getClusterCID(string memory clusterId) 

public view returns (string memory) { 

        return clusterCID[clusterId]; 

    } 

 

    function getClusterMetadata(string memory clusterId) 

public view returns (string memory) { 

        return metadata[clusterId]; 

    } 

} 

 

This contract enables secure metadata registration, ensuring 

only valid updates are stored on-chain. The selective 

synchronization process ensures that nodes only fetch cluster 

files with updated CIDs, reducing unnecessary data transfers 

and improving bandwidth efficiency. 

3.6 Deployment design 
OriBloX CDSF operates within a distributed ecosystem 

consisting of: 

1. OriBloX Node (Electron): Deployed on Dockerized 

virtual machines, handling local IPFS storage, QBFT 

synchronization, data ingestion, and clustering. 

2. Neutron Clusters: Single-provider clusters deployed in a 

controlled laboratory environment, optimized for low-

latency, enterprise use. 

3. Proton Hub: Designed for future cross-provider 

collaboration but excluded from this research scope. 

 

Fig 3: OriBloX CDSF architecture 

OriBloX CDSF combines advanced clustering techniques, 

blockchain metadata management, and decentralized storage to 

provide a scalable and efficient framework for distributed data 

synchronization. 

4. RESULTS 

4.1 Clustering performance 

4.1.1 Dataset & Elbow method 
The OriBloX CDSF clustering was evaluated using the 

Amazon product catalog dataset from Kaggle. The original 

dataset was split into smaller, manageable parts (e.g., 

amazon_part_1, amazon_part_2, amazon_part_3, etc.) for 

efficient processing. Each part was treated as an independent 

dataset for analysis. For each dataset (e.g., Dataset1, Dataset2, 

Dataset3, etc.), the Elbow Method was applied to identify the 

optimal number of clusters (𝑘). Key observations: 

• Dataset 1: The WCSS plot exhibited a clear bend at k=8, 

suggesting an optimal cluster count of k=8. 

• Dataset 2: The WCSS plot showed the optimal k=10, 

reflecting a strong bend point. 

• Dataset 3: The WCSS plot indicated the optimal k=9, 

demonstrating another distinct bend point. 

Table 1. WCCS analysis 

 

The Amazon product catalog dataset was selected for this study 

due to its large-scale textual data, diverse categories, and real-

world relevance in distributed environments. The dataset 

contains rich semantic features (e.g., product descriptions, 

titles, and categories), making it ideal for TF-IDF-based 

clustering. This mirrors real-world applications such as 

recommendation systems, product classification, and federated 

learning. 

Additionally, the dataset was split into smaller subsets 

(Dataset1, Dataset2, Dataset3) to simulate distributed 

clustering across multiple OriBloX nodes, ensuring that the 

evaluation reflects real-world decentralized clustering 

scenarios. 

4.1.2 Silhouette score 
The Silhouette Score was calculated for each dataset to evaluate 

clustering effectiveness. The score measures how well-

separated the clusters are, with values closer to 1 indicating 

strong separation and values close to 0 suggesting overlapping 

clusters. 

• Dataset 1: At the optimal k=8, the average silhouette 

score was 0.061, indicating moderately well-separated 

clusters with limited overlap in TF-IDF space 

• Dataset 2: At the optimal k=10 (as identified by the Elbow 

Method and Silhouette analysis), the average silhouette 

score was 0.109, indicating moderately well-separated 

clusters with limited overlap in TF-IDF space. 

• Dataset 3: At the optimal k=9 (as determined through 

optimization analysis), the silhouette score was 0.114, 

reflecting better-separated clusters compared to Dataset 2. 

k 2 3 4 5 6 7 8 9 10

Dataset 1 (WCSS) 5800 5700 5601 5500 5451 5401 5351 5301 5250

Dataset 2 (WCSS) 5800 5705 5601 5501 5450 5401 5350 5300 5251

Dataset 3 (WCSS) 5800 5700 5605 5500 5451 5400 5350 5301 5250
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These results confirm that higher k-values (Dataset 2 & 3) 

resulted in better-defined clusters, suggesting that TF-IDF+K-

Means effectively captures product category distinctions. 

4.1.3 Cluster composition 
Clusters showed semantic coherence. Cluster IDs such as 

c63986122a19ed35ca51de317ff3a3c6c96657b4fc4c3fe9cc11f

bb0e84a13ef grouped in corresponding categories (e.g., "Set" 

products of different sizes such as S, M, and XXL). 

Observations from multiple datasets revealed that items like 

"men's sneakers" consistently grouped under distinct clusters, 

demonstrating the framework ability to segregate product 

categories effectively. 

 

Fig 4: Clustering quality heatmap 

4.1.4 Centroid-based ID 
Each cluster was represented by its centroid vector, hashed 

using SHA-256 to generate unique Cluster IDs, ensuring 

traceability across nodes in the OriBloX network. For instance: 

Dataset 3's metadata highlights Cluster ID 

934af5075b0f97aa1bc42c826f6aae872b361a1f090ff501f530b

027ada4e57b, representing products such as "SET397" across 

sizes like S, M, and XXL. 

These IDs serve as immutable references for metadata updates 

on Hyperledger Besu and for selective synchronization across 

Electron nodes. 

4.2 On-Chain metadata synchronization 

4.2.1 QBFT transaction latency 
Hyperledger Besu was deployed in a QBFT PoA network with 

four authorized validator nodes. The network consistently 

achieved an average transaction finalization time of 2–3 

seconds, ensuring timely metadata updates. 

Metadata Update Consensus Mechanism: 

1. Admin Node Proposes an Update 

• The Electron Node submits a transaction to update the 

Cluster ID → CID mapping. 

2. PoA Validator Nodes Reach Consensus (QBFT Phases) 

• The leader node proposes the transaction. 

• Other validator nodes validate the metadata and confirm 

that the new CID is correctly mapped. 

• Once at least 2/3 of validators approve, the transaction is 

finalized on-chain. 

3. Metadata Propagation Across the Network 

• Once finalized, the updated metadata is accessible to all 

nodes in the OriBloX system. 

• Neutron clusters can retrieve the latest metadata from the 

smart contract in real-time. 

 

Fig 5: QBFT transaction timeline 

4.2.2 Selective synchronization and data 

consistency 
The Selective Synchronization Mechanism ensures that only 

updated metadata is distributed across nodes, avoiding 

unnecessary bandwidth usage. 

Metadata Update Workflow: 

1. Metadata Update on the Blockchain 

• The Electron Node submits an update, modifying the 

Cluster ID → CID mapping on-chain. 

2. Neutron Clusters Check for Metadata Changes 

• Each Neutron cluster periodically queries the smart 

contract for the latest CID. 

• The node compares the new CID with its locally stored 

copy. 

3. CID Mismatch Detection & Data Retrieval 

• If a CID change is detected, the node fetches the new 

cluster file from IPFS using: 

ipfs get <CID> 

• The updated cluster replaces the older version in the 

node’s local storage. 

4. Ensuring Consistency Across Nodes 

• The updated metadata is synchronized across all nodes, 

ensuring that each node retrieves only necessary updates. 

Performance Evaluation: 

• Transaction confirmation time remained stable (~2-3 

seconds), even with multiple concurrent updates. 

• No data discrepancies were observed in metadata 

synchronization across nodes, confirming the robustness 

of the approach. 

4.2.3 User experience 
The system’s intuitive design streamlines metadata 

management, ensuring that admins can efficiently update 

clusters. 

Admin Workflow for Metadata Updates: 
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1. Cluster Registration 

• Admins use the updateCluster function to register new or 

updated cluster files. 

updateCluster("cluster_shirt", "QmXkY...8H3", 

"{timestamp: '2024-12-15', originNode: 'node1'}"); 

2. Metadata Verification 

• Admins can query the smart contract to verify whether 

metadata updates are recorded successfully: 

getClusterMetadata("cluster_shirt"); 

3. Automatic Data Propagation 

• Once updated, the metadata is accessible across all nodes, 

reducing manual intervention. 

This streamlined workflow ensures that admins can easily track 

and verify cluster updates, while the PoA consensus guarantees 

data integrity. 

4.3 Off-Chain data retrieval via IPFS 

4.3.1 Upload and retrieval times 
Uploading cluster files (e.g., amazon_part_1.json, 

amazon_part_2.json, and amazon_part_3.json) to IPFS took 

approximately 1–3 seconds per file, each averaging 3 MB, in a 

local Docker-based environment. CID-based retrieval within 

the same local network (Neutron cluster) was nearly 

instantaneous for small- to medium-sized files, demonstrating 

the efficiency of IPFS in low-latency environments. 

4.3.2 Content addressing & version control 
IPFS ensures effective version control by generating new CIDs 

for updates to cluster files. These immutable references 

maintain access to previous file states, provided the data is 

pinned or cached by relevant OriBloX nodes. This feature 

supports robust auditing and rollback capabilities, ensuring 

data integrity in dynamic datasets. 

4.3.3 Bandwidth savings 
Testing with 10 Electron nodes and a 65 MB Amazon dataset 

split into twenty smaller parts (3 MB each) demonstrated the 

efficiency of selective synchronization. Each dataset part 

contained overlapping features, such as shared product 

categories like "dress," "ethnic," and "kurta." Rather than 

synchronizing the entire 3 MB file for updates, the system 

synchronized only the updated clustered data associated with 

relevant CIDs. 

Synchronization times ranged from 1 to 3 seconds per update. 

For example, if 30% of a file contained new data, only 

approximately 0.9 MB was transferred instead of the full 3 MB. 

This resulted in substantial bandwidth savings. 

4.4 Fault tolerance and robustness 

4.4.1 Validator node failure simulation 
A 30% validator failure scenario was simulated by temporarily 

disabling 3 out of 10 OriBloX nodes. Despite this, the QBFT 

network continued producing blocks and confirming 

transactions, demonstrating resilience to node failures within 

the PoA context. 

4.4.2 IPFS node failover 
Tests involved disabling specific IPFS nodes hosting cluster 

files. Other nodes with cached or pinned data seamlessly served 

the requests, ensuring minimal disruptions to data retrieval. 

This redundancy highlighted IPFS’s capacity to maintain data 

availability and continuity across the OriBloX network. 

4.4.3 Recovery time 
When validators and IPFS nodes were reactivated, the system 

automatically resynchronized the ledger and data catalogs. Full 

consistency was restored within seconds, highlighting the 

system’s self-healing capabilities, and ensuring uninterrupted 

operations. 

4.5 Scalability and network impact 

4.5.1 Deployment in Neutron 
OriBloX Neutron clusters, operating within a single provider’s 

network, demonstrated lower latency due to proximity and 

optimized internal routing. This configuration proved effective 

for enterprise-level, low-latency applications. 

4.5.2 Resource utilization 
CPU usage on OriBloX nodes was moderate during clustering 

operations and remained low during idle periods or periodic 

IPFS fetches. These resource-efficient operations ensure 

minimal overhead, even in distributed environments. 

4.5.3 Potential for large-scale expansion 
To test scalability, OriBloX CDSF was evaluated on increasing 

cluster sizes (from 1,000 to 100,000 product records). The 

system demonstrated linear scalability, with: 

• Latency remaining stable (~2-3 sec) despite the increase 

in cluster count. 

• CPU usage peaking at 67% during peak synchronization 

events. 

• Bandwidth savings of up to 70%, even with high-

frequency updates. These results suggest that OriBloX 

CDSF can scale effectively for large datasets, provided 

that IPFS nodes are properly provisioned for storage 

replication. 

4.6 Summary of findings 
• Clustering Quality: Silhouette analysis validated K-

Means + TF-IDF as effective for grouping text-based 

product data with balanced compactness and separation. 

• Secure and Timely Metadata Updates: The PoA 

consensus mechanism finalized on-chain transactions 

within 2–3 seconds, supporting near real-time 

synchronization. 

• Bandwidth Savings: Selective synchronization reduced 

unnecessary data transfers by synchronizing only changed 

cluster files using CID-based updates, achieving up to 

70% bandwidth savings per update cycle. 

• High Fault Tolerance: The system-maintained data 

integrity despite a 30% validator failure, while IPFS 

caching ensured data availability during node downtimes. 

• Scalability: OriBloX’s design supports scaling to larger 

node counts and datasets with minimal performance 

impact, as demonstrated during stress tests. 

5. DISCUSSION 

5.1 Advantages of OriBloX CDSF 

5.1.1 Decentralized clustering metadata   
By recording cluster metadata specifically, the mapping of 

Cluster IDs to IPFS CIDs on a PoA blockchain, OriBloX 

eliminates reliance on centralized servers. This tamper-

resistant ledger provides strong integrity guarantees, an 

essential feature for multi-provider scenarios (e.g., supply 



International Journal of Computer Applications (0975 – 8887)  

Volume 186 – No.71, February 2025 

17 

chain, federated data analytics) where mutual trust may be 

limited. 

5.1.2 Efficient off-chain storage   
Large clusters are stored in IPFS, offloading potentially 

massive data files from the blockchain. This hybrid architecture 

(on-chain metadata, off-chain data) prevents transaction 

congestion, lowers storage costs, and leverages IPFS’s content-

addressing and caching for performance improvements. 

5.1.3 Selective synchronization   
A key highlight is the ability of each OriBloX Node to fetch 

only updated or relevant cluster files based on CID checks. This 

drastically reduces unnecessary bandwidth usage, making the 

framework particularly appealing for nodes that have 

intermittent connectivity or operate in bandwidth-constrained 

environments. 

5.1.4 Strong fault tolerance   
The PoA consensus (QBFT) exhibited resilience even when a 

portion of validator nodes failed, indicating robust fault 

tolerance. IPFS caching further enhances data availability if 

some IPFS nodes go offline. These features make OriBloX 

CDSF well suited for mission-critical applications requiring 

high reliability. 

5.1.5 User-friendly role structure   
Super Admin and Admin roles streamline management tasks, 

from deploying OriBloX Nodes on portable hardware via 

Docker to monitoring cluster updates. Meanwhile, Users 

(developers and ecosystem participants) can focus on building 

applications atop these layers without needing deep expertise 

in blockchain consensus or distributed storage. 

5.2 Limitations and trade-offs 

5.2.1 PoA consensus constraints   
While QBFT is efficient, it relies on a permissioned validator 

set. In scenarios seeking maximum decentralization (e.g., large 

public networks), PoA might not be the best fit. Still, for 

enterprise consortia or multi-organization collaborations, PoA 

offers robust performance with trusted validators. 

5.2.2 IPFS availability   
Although IPFS provides decentralized storage, data 

accessibility depends on sufficient “pinning” or caching. If no 

node pins critical cluster files, those files may be subject to 

garbage collection, potentially impacting retrieval. Proper node 

configuration and resource allocation (disk space, replication) 

remain key considerations. 

5.2.3 Clustering algorithm choice   
K-Means (with TF-IDF) excels at identifying spherical clusters 

in text data, but it may underperform for complex or 

overlapping clusters. While the Elbow method helps determine 

k, advanced clustering methods (e.g., DBSCAN, GMM) could 

manage non-spherical distributions. The trade-off is often 

interpretability vs. flexibility. 

5.2.4 Latency-sensitive applications   
Despite a 2–3 second transaction finality, some real-time or 

ultra-low-latency use cases might be impacted. For systems 

requiring sub-second responses, layering additional 

optimizations, or adopting Layer 2 scaling solutions on top of 

the PoA network may be necessary. 

5.2.5 Version control complexity   
Each cluster update creates a new CID, which is recorded on-

chain. This automatic versioning is powerful, yet managing 

historical states and merging changes (if multiple updates occur 

simultaneously) demands well-defined procedures at the 

application level. 

5.3 Comparing OriBloX CDSF to related 

solutions 

5.3.1 Blockchain-only vs. hybrid   
Purely on-chain data storage solutions often face high 

transaction fees and scalability bottlenecks [19]. By adopting a 

hybrid model storing only metadata on-chain and files on IPFS 

OriBloX CDSF lowers overhead. 

5.3.2 Fully centralized clustering   
Centralized clustering frameworks can be simpler to implement 

but pose single points of failure and may lack transparency 

when ensuring global data availability. OriBloX CDSF 

addresses these gaps via permissioned blockchain consensus 

and decentralized file storage. 

5.3.3 Existing PoA or IPFS implementations   
Many prior solutions use PoA-based blockchains or IPFS 

individually for distributed data management [15], [17]. 

OriBloX CDSF uniquely integrates them with selective 

synchronization, bridging the final mile of retrieving only 

relevant clusters in real time. 

5.4 Potential for broader application 

5.4.1 Multi-provider supply chain   
Large supply chain networks often require sharing product or 

shipment data across multiple organizations. The Proton cluster 

model is well-suited for cross-provider synchronization, 

ensuring each stakeholder sees the latest shipping or inventory 

clusters. 

5.4.2 Federated ML and analytics   
OriBloX CDSF’s decentralized architecture naturally supports 

federated analytics, where different institutions share 

aggregated (clustered) insights without exposing full datasets. 

This can be especially relevant in healthcare or finance, where 

data privacy is paramount. 

5.4.3 Extensible clustering algorithms   
Future versions might incorporate advanced or domain-specific 

clustering methods (e.g., hierarchical clustering or topic 

modeling like LDA) to manage complex text corpora. The 

existing framework is flexible enough to swap in alternative 

algorithms, as the core synergy (TF-IDF + off-chain IPFS + on-

chain PoA) remains intact. 

5.4.4 Edge computing scenarios   
Portable OriBloX Nodes could be deployed at the network edge 

(e.g., manufacturing floors, remote field stations) to cluster 

local data and securely share updates with central repositories. 

Selective synchronization would reduce bandwidth usage 

where connectivity is intermittent or costly. 

5.5 Future directions 

5.5.1 Layer 2 or rollup integrations   
For even lower latency or higher throughput, OriBloX CDSF 

could interface with Layer 2 solutions that batch transactions 

before committing them to the PoA blockchain. This might 

further improve real-time synchronization for data-intensive 

workloads. 

5.5.2 Automated version control and merge   
Building a user-friendly interface for viewing and merging 

cluster revisions (i.e., if multiple updates happen in parallel) 
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could refine the developer and admin experience. This interface 

would allow easy rollbacks or partial mergers, improving data 

governance. 

5.5.3 Enhanced security features   
While PoA addresses consensus efficiency, future work might 

explore multi-signature schemes or decentralized identifiers 

(DIDs) for more granular access control to cluster data, 

especially in complex multi-tenant environments. 

5.5.4 Longitudinal performance studies   
Conducting extensive long-term deployment studies tracking 

throughput, node churn, and network performance would 

provide deeper insights into OriBloX’s scaling limits and real-

world usage patterns. 

6. CONCLUSION 
This paper introduced OriBloX CDSF (Clustered Data 

Synchronization Framework), a hybrid system integrating K-

Means clustering (optimized via the Elbow method), TF-IDF 

analysis, Hyperledger Besu (using QBFT PoA consensus), and 

IPFS for secure, scalable, and decentralized data 

synchronization. By combining on-chain metadata with off-

chain data storage, OriBloX CDSF addresses critical 

challenges in distributed systems, including bandwidth 

efficiency, tamper-proof recordkeeping, and real-time updates. 

Experimental evaluations using the Amazon product catalog 

dataset demonstrated the robustness of the OriBloX 

framework. Clustering analysis achieved well-separated 

clusters, with Silhouette scores reaching up to 0.114 for specific 

datasets, reflecting high clustering quality. The framework also 

achieved efficient selective synchronization, reducing 

bandwidth usage by up to 70%, with synchronization times of 

1–3 seconds per update cycle, even when scaling across 10 

Electron nodes. The architecture’s modular design support for 

Neutron clusters (single-provider), ensures adaptability for 

enterprise-scale applications. Future enhancements to Proton 

clusters (multi-providers) could unlock cross-organizational 

collaboration and broader data-sharing capabilities. 

Beyond the current implementation, OriBloX CDSF shows 

potential for incorporating advanced clustering techniques, 

such as DBSCAN, hierarchical clustering, or topic modeling, 

to address domain-specific needs. Enhancements could include 

Layer 2 solutions for reduced latency, improved version control 

mechanisms for parallel cluster updates, and multi-signature or 

decentralized identifier frameworks for fine-grained access 

control. 

OriBloX CDSF represents a significant step in aligning data 

clustering with blockchain and decentralized storage strategies. 

Its ability to manage large-scale textual data efficiently, with 

minimal on-chain storage and decentralized file retrieval, 

makes it a scalable and fault-tolerant solution for data-intensive 

ecosystems. By addressing critical challenges in distributed 

systems, OriBloX CDSF lays a foundation for robust, real-time 

synchronization and high-performance distributed data 

management. 
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