CFP last date
20 February 2025
Reseach Article

Smart Screening: Non-Invasive Detection of Severe Neonatal Jaundice using Computer Vision and Deep Learning

by Kartikya Gupta, Vaibhav Sharma, Shailendra Singh Kathait
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 35
Year of Publication: 2024
Authors: Kartikya Gupta, Vaibhav Sharma, Shailendra Singh Kathait
10.5120/ijca2024923924

Kartikya Gupta, Vaibhav Sharma, Shailendra Singh Kathait . Smart Screening: Non-Invasive Detection of Severe Neonatal Jaundice using Computer Vision and Deep Learning. International Journal of Computer Applications. 186, 35 ( Aug 2024), 35-43. DOI=10.5120/ijca2024923924

@article{ 10.5120/ijca2024923924,
author = { Kartikya Gupta, Vaibhav Sharma, Shailendra Singh Kathait },
title = { Smart Screening: Non-Invasive Detection of Severe Neonatal Jaundice using Computer Vision and Deep Learning },
journal = { International Journal of Computer Applications },
issue_date = { Aug 2024 },
volume = { 186 },
number = { 35 },
month = { Aug },
year = { 2024 },
issn = { 0975-8887 },
pages = { 35-43 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number35/transfer-learning-based-neonatal-jaundice-detection-using-mobilenet-and-efficientnet/ },
doi = { 10.5120/ijca2024923924 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-08-26T20:51:45.943762+05:30
%A Kartikya Gupta
%A Vaibhav Sharma
%A Shailendra Singh Kathait
%T Smart Screening: Non-Invasive Detection of Severe Neonatal Jaundice using Computer Vision and Deep Learning
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 35
%P 35-43
%D 2024
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Severe neonatal jaundice is a condition in newborns where high levels of bilirubin cause the skin and eyes to turn yellow, posing a risk of brain damage if not promptly treated. Current traditional methods are highly invasive and require intervention. Hence, this paper introduces a non-invasive approach for the preemptive detection of severe neonatal jaundice using computer vision and deep learning. The data processing pipeline includes image resizing, semantic segmentation, test split, data augmentation, and at last training-validation split. For this study, a custom CNN model was developed for binary classification alongside three transfer learning models to compare all four’s performance across key metrics such as accuracy, precision, recall, F1-score, and AUC. After training, all four models were saved and then used to classify a different dataset to evaluate their performance on visually distinct images. The Vision Transformer (1.23 GiB) and EfficientNet (320 MiB) models demonstrated superior performance on testing data, achieving AUC scores of 0.87 and 0.9, respectively. However, the custom CNN model (162 MiB) and Vision Transformer achieved 0.93 and 1.0 AUC score consistently on inference data, surpassing the other models. This research contributes to creating a contactless, frugal system that can be used as a mobile application, which predicts the chances of an infant having severe jaundice.

References
  1. Slusher, T.M., Zamora, T.G., Appiah, D., Stanke, J.U., Strand, M.A., Lee, B.W., Richardson, S.B., Keating, E.M., Siddappa, A.M. and Olusanya, B.O., 2017. Burden of severe neonatal jaundice: a systematic review and meta-analysis. BMJ paediatrics open, 1(1).
  2. Althnian, A., Almanea, N. and Aloboud, N., 2021. Neonatal Jaundice Diagnosis Using a Smartphone Camera Based on Eye, Skin, and Fused Features with Transfer Learning. Sensors, 21, p.7038.
  3. Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., Tang, Y., Xiao, A., Xu, C., Xu, Y. and Yang, Z., 2022. A survey on vision transformer. IEEE transactions on pattern analysis and machine intelligence, 45(1), pp.87-110.
  4. Diala, U.M., Usman, F., Appiah, D., Hassan, L., Ogundele, T., Abdullahi, F., Satrom, K.M., Bakker, C.J., Lee, B.W. and Slusher, T.M., 2023. Global Prevalence of Severe Neonatal Jaundice among Hospital Admissions: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 12(11), p.3738.
  5. Kinshella, M.L.W., Salimu, S., Chiwaya, B., Chikoti, F., Chirambo, L., Mwaungulu, E., Banda, M., Hiwa, T., Vidler, M., Molyneux, E.M. and Dube, Q., 2022. Challenges and recommendations to improve implementation of phototherapy among neonates in Malawian hospitals. BMC pediatrics, 22(1), p.367.
  6. Ansong-Assoku, B., Shah, S.D., Adnan, M. and Ankola, P.A., Neonatal Jaundice.
  7. Trasancos, C. and Horey, D., 2024. Experiences with neonatal jaundice management in hospitals and the community: interviews with Australian health professionals. BMJ open, 14(2), p.e075896.
  8. Tcaciuc, E., Podurean, M. and Tcaciuc, A., Management of Crigler-Najjar syndrome. world, 5, p.6.
  9. Labpedia (n.d.) 'Liver function Tests:- Part 4 – Neonatal Jaundice Classification and Diagnosis', Labpedia, accessed 14 June 2024. Available at: https://labpedia.net/liver-function-tests-part-4-neonatal-jaundice-classificationand-and-diagnosis/
  10. Egejuru, N.C., Asinobi, A.O., Adewunmi, O., Aderounmu, T., Adegoke, S.A. and Idowu, P.A., 2019. A classification model for severity of neonatal Jaundice using deep learning. American Journal of Pediatrics, 5(3), pp.159-169.
  11. Nayagi, S.B. and Angel, T.S., 2022. Detection and Classification of Neonatal Jaundice Using Color Card Techniques--A Study. International Journal of Online \& Biomedical Engineering, 18(15).
  12. Hardalac, F., Aydin, M., Kutbay, U.Ğ.U.R.H.A.N., Ayturan, K., Akyel, A., Çağlar, A., Hai, B. and Mert, F., 2021. Classification of neonatal jaundice in mobile application with noninvasive imageprocessing methods. Turkish Journal of Electrical Engineering and Computer Sciences, 29(4), pp.2116-2126.
  13. Abdulrazzak, A.Y., Mohammed, S.L., Al-Naji, A. and Chahl, J., 2024. Real-Time Jaundice Detection in Neonates Based on Machine Learning Models. BioMedInformatics, 4(1), pp.623-637.
  14. Hashim, W., Al-Naji, A., Al-Rayahi, I.A., Alkhaled, M. and Chahl, J., 2021. Neonatal jaundice detection using a computer vision system. Designs, 5(4), p.63.
  15. Abdulrazzak, A.Y., Mohammed, S.L. and Al-Naji, A., 2023. NJN: A Dataset for the Normal and Jaundiced Newborns. BioMedInformatics, 3(3), pp.543-552.
  16. Reis, D., Kupec, J., Hong, J. and Daoudi, A., 2023. Real-time flying object detection with YOLOv8. arXiv preprint arXiv:2305.09972.
  17. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N. and Terzopoulos, D., 2021. Image segmentation using deep learning: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(7), pp.3523-3542.
  18. Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2017. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), pp.84-90.
  19. Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V. and Le, Q.V., 2019. Searching for mobilenetv3. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 1314-1324).
  20. Tan, M. and Le, Q., 2021, July. Efficientnetv2: Smaller models and faster training. In International conference on machine learning (pp. 10096-10106). PMLR.
  21. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S. and Uszkoreit, J., 2020. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
  22. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I., 2017. Attention is all you need. Advances in neural information processing systems, 30.
  23. Sardana, A. (n.d.). 1-Neonatal Jaunice Detection/Dataset/Face. GitHub. Available at: https://github.com/AshishSardana/jaundice-detection/tree/master/1-Neonatal%20Jaunice%20Detection/Dataset/Face.
Index Terms

Computer Science
Information Sciences
Neonatal Jaundice
Medical Imaging
AI in Healthcare

Keywords

Biomedical Engineering Bilirubin Computer Vision Deep Learning Semantic Segmentation.