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ABSTRACT 

Severe neonatal jaundice is a condition in newborns where high 

levels of bilirubin cause the skin and eyes to turn yellow, posing 

a risk of brain damage if not promptly treated. Current 

traditional methods are highly invasive and require 

intervention. Hence, this paper introduces a non-invasive 

approach for the preemptive detection of severe neonatal 

jaundice using computer vision and deep learning. The data 

processing pipeline includes image resizing, semantic 

segmentation, test split, data augmentation, and at last training-

validation split. For this study, a custom CNN model was 

developed for binary classification alongside three transfer 

learning models to compare all four’s performance across key 

metrics such as accuracy, precision, recall, F1-score, and AUC. 

After training, all four models were saved and then used to 

classify a different dataset to evaluate their performance on 

visually distinct images. The Vision Transformer (1.23 GiB) 

and EfficientNet (320 MiB) models demonstrated superior 

performance on testing data, achieving AUC scores of 0.87 and 

0.9, respectively. However, the custom CNN model (162 MiB) 

and Vision Transformer achieved 0.93 and 1.0 AUC score 

consistently on inference data, surpassing the other models. 

This research contributes to creating a contactless, frugal 

system that can be used as a mobile application, which predicts 

the chances of an infant having severe jaundice. 

General Terms 

Neonatal Jaundice, Medical Imaging, AI in Healthcare. 

Keywords 

Biomedical Engineering, Bilirubin, Computer Vision, Deep 

Learning, Semantic Segmentation. 

1. INTRODUCTION 
Contrary to popular belief, neonatal jaundice [1] is a medical 

symptom rather than a disease itself. It is characterized by 

elevated bilirubin levels in newborns, resulting in the yellowing 

of the skin and eyes. Approximately 85% of newborns 

experience some degree of jaundice, which is typically mild 

and temporary. This condition, known as physiological 

jaundice, usually appears within the first few days after birth 

and resolves on its own as the baby's liver matures and begins 

to process bilirubin more effectively. However, if the infant is 

unable to do so, this condition can lead to significant health 

complications, including the risk of brain damage. Traditional 

diagnostic methods for severe jaundice, such as blood tests, are 

often invasive and may not be easily accessible, particularly in 

low-resource settings. These challenges highlight the need for 

more accessible and non-invasive diagnostic solutions. 

The rapid advancements in computer vision and deep learning 

algorithms offer promising alternatives for disease detection. 

By leveraging deep learning algorithms, it is possible to 

develop a non-invasive frugal model that can accurately detect 

severe neonatal jaundice without requiring traditionally 

invasive detection procedures. This approach not only 

improves accessibility while bringing in lower cost but also 

enhances the efficiency of early jaundice detection. [2] 

The proposed method starts with processing the images of 

newborns to identify jaundice. The data processing pipeline 

includes image resizing, semantic segmentation, data 

augmentation techniques, and finally training-validation split 

for model training. Note that after implementing the semantic 

segmentation model and image resizing, 25% of the data is 

taken as testing data, hence avoiding data augmentation of the 

test set while maintaining a smaller test class size of 190 

images. A custom convolutional neural network (CNN) model, 

along with three transfer learning models —MobileNet, 

EfficientNet, and Vision Transformer [3]—were developed for 

the classification of images to predict whether an image shows 

a healthy infant or a jaundice. These models were evaluated on 

popular performance metrics like accuracy, precision, recall, 

F1-score, and area under the curve (AUC) to ensure 

comprehensive assessment and comparison.  

Keeping the users in mind, inference testing of all four models 

becomes imperative, as their performance must be tested in 

conditions where the picture of an infant is taken in varying 

conditions like distance, lighting, camera quality, skin 

complexion, etc. 

The study contributes to the field of medical image analysis by 

showcasing the efficacy of contemporary deep learning 

methodologies in neonatal jaundice detection. By using 

cutting-edge computer vision algorithms, this research aims to 

create a robust and frugal solution to improve clinical 

prognosis. Through rigorous experimentation and validation, 

the results show promising accuracy in jaundice detection in 

infants, thus enabling early intervention and improved clinical 

outcomes. 

1.1 Severe Neonatal Jaundice 
Neonatal jaundice is a common condition in newborns, 

characterized by the yellowing of the skin and the sclerae (the 

whites of the eyes) due to elevated levels of bilirubin in the 

blood. Bilirubin is a yellow pigment produced during the 

normal breakdown of red blood cells. The liver typically 

processes bilirubin, but in newborns, the liver is often not fully 

developed, leading to an accumulation of bilirubin in the 

bloodstream. This condition, if not managed properly, can lead 
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to severe complications, including kernicterus [1] [2] [3], a 

form of brain damage caused by very high levels of bilirubin. 

1.1.1 Types 
Severe neonatal jaundice can be classified primarily into two 

types based on the nature of bilirubin accumulation: 

unconjugated hyperbilirubinemia and conjugated 

hyperbilirubinemia. 

• Unconjugated hyperbilirubinemia (UHB): This is 

the most common form of jaundice in neonates, 

where there is an excess of unconjugated bilirubin. 

This type can be physiological or pathological [5]. 

Physiological jaundice typically appears on the 

second or third day of life and resolves within a week. 

Pathological jaundice, however, may present within 

the first 24 hours and can persist longer, often 

indicating underlying conditions such as hemolytic 

diseases, genetic disorders, or internal bleeding.  

• Conjugated hyperbilirubinemia (CHB): Less 

common but always pathological, this type occurs 

when there is an excess of conjugated bilirubin. 

Causes include biliary atresia, neonatal hepatitis, and 

metabolic disorders. Unlike UHB, CHB does not 

respond to phototherapy and often requires surgical 

intervention or specific medical treatments, 

depending on the underlying cause [6]. 

• Understanding these types helps in diagnosing the 

condition correctly and administering the appropriate 

treatment to prevent complications such as 

kernicterus and chronic bilirubin encephalopathy. 

1.1.2 Causes 
The etiology of severe neonatal jaundice is diverse, involving 

various genetic, environmental, and physiological factors: 

• Hemolytic Diseases: Conditions like Rh 

incompatibility, ABO incompatibility, and G6PD 

deficiency lead to the excessive breakdown of red 

blood cells, overwhelming the infant’s liver capacity 

to process bilirubin [4]. 

• Genetic Disorders: Inherited conditions such as 

Gilbert’s syndrome and Crigler-Najjar syndrome [8] 

affect the enzymes responsible for bilirubin 

metabolism, leading to its accumulation [6]. 

• Infections: Neonatal sepsis and intrauterine 

infections can impair liver function and bilirubin 

metabolism, resulting in jaundice [7]. 

• Prematurity: Premature infants have 

underdeveloped livers, which reduces their ability to 

conjugate and excrete bilirubin efficiently. 

Additionally, they often have higher rates of red 

blood cell turnover, further contributing to elevated 

bilirubin levels [4] [5]. 

• Breastfeeding: Breastfeeding jaundice and breast 

milk jaundice are two forms associated with 

breastfeeding. The former occurs due to inadequate 

milk intake leading to dehydration, while the latter 

involves substances in breast milk that inhibit 

bilirubin conjugation [6]. 

1.1.3 Symptoms 
The clinical manifestations of severe neonatal jaundice extend 

beyond the typical yellowish skin and sclera discoloration: 

• Early Symptoms: These include jaundice appearing 

within the first 24 hours of life, poor feeding, 

lethargy, and a high-pitched cry. The early onset of 

jaundice is often indicative of pathological causes 

[4], [5]. 

• Progressive Symptoms: As bilirubin levels rise, 

symptoms can progress to include irritability, 

hypotonia (reduced muscle tone), and arched back 

with neck extension (opisthotonos) [4], [7]. 

• Acute Bilirubin Encephalopathy (ABE): This severe 

complication presents with signs such as fever, shrill 

cry, seizures, and even coma. ABE requires 

immediate medical intervention to prevent 

permanent neurological damage [5], [6]. 

• Kernicterus: Chronic and severe hyperbilirubinemia 

can lead to kernicterus, characterized by permanent 

neurological impairments including athetoid cerebral 

palsy, hearing loss, dental dysplasia, and cognitive 

deficits [4] [7]. 

Table 1: Bilirubin levels that may require treatment [43] 

The Period Infants Bilirubin Level 

24 hours or younger infants 10 mg/dL 

25 to 48 hours of infants 15 mg/dL 

49 to 72 hours of infants 18 mg/dL 

Older than 72 hours of, infants 20 mg/dL 

1.1.4 Traditional Detection Methods 
The management of severe neonatal jaundice aims to reduce 

bilirubin levels and prevent complications. 

• Phototherapy: The primary treatment for UHB 

involves using blue light to convert bilirubin into a 

water-soluble form that can be excreted in urine. 

Intensive phototherapy is often required for severe 

cases. [4] [5]. 

• Exchange Transfusion: For extremely high bilirubin 

levels or when phototherapy is ineffective, exchange 

transfusion is performed to rapidly reduce bilirubin 

levels and remove sensitized red blood cells in cases 

of hemolytic disease [5]. 

• Intravenous Immunoglobulin (IVIG): This is used in 

cases of hemolytic disease of the newborn, 

particularly Rh incompatibility, to reduce hemolysis 

and bilirubin production [4]. 

• Treating Underlying Conditions: Identifying and 

managing the underlying cause is critical. This might 

include antibiotics for infections, hydration and 

increased feeding frequency for breastfeeding 

jaundice, or surgical intervention for biliary atresia 

[6]. 

• Supportive Care: This includes maintaining adequate 

hydration and nutrition, and monitoring for signs of 

worsening jaundice or bilirubin encephalopathy [7]. 

Given these challenges, there is a growing interest in 

developing non-invasive, automated methods for the early 

detection of severe neonatal jaundice. The integration of 

computer vision and deep learning techniques, as explored in 

recent studies, offers promising potential for improving the 

accuracy and accessibility of jaundice detection in newborns. 

These limitations have led to a growing interest in non-invasive 

detection techniques, particularly those utilizing computer 

vision and deep learning to analyze images of newborns' skin. 
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These methods can be implemented via mobile applications, 

leveraging the widespread availability of smartphones and 

digital cameras. The primary advantage of non-invasive 

techniques is their ability to eliminate the need for blood draws, 

thereby reducing discomfort and infection risk. They are also 

cost-effective, requiring minimal equipment and offering a 

scalable solution that can be integrated into existing healthcare 

systems. Moreover, non-invasive methods enhance 

accessibility, especially in rural or underdeveloped areas, by 

enabling early intervention and empowering parents to monitor 

their newborn's health without immediate access to healthcare 

facilities.  

2. RELATED WORKS 
In recent years, several studies have been conducted for the 

binary classification of severe neonatal jaundice from medical 

images. The following is a comparative analysis that looks into 

some of such works:  

Egejuru et al. [10] developed a classification model for 

predicting the severity of neonatal jaundice using deep 

learning. They collected data on 23 variables from 23 neonatal 

patients at a hospital in Nigeria. The authors used a deep 

learning multi-layer perceptron (MLP) classifier, testing 

different numbers of epochs from 5 to 50. The model with 5 

epochs achieved the best performance, showing the lowest 

mean absolute error of 0.3889. This model correctly classified 

60.9% of cases overall, with perfect classification for low 

severity cases, 61.5% accuracy for moderate cases, and 42.9% 

accuracy for high severity cases. The study demonstrated that 

deep learning techniques can be effectively applied to classify 

neonatal jaundice severity, potentially improving early 

detection and treatment. The authors suggest that their model 

could be integrated into existing Health Information Systems to 

enhance real-time assessment of clinical information affecting 

the risk of kernicterus and liver disease among neonatal 

patients.  

Nayagi et al. [11] provide a comprehensive review of computer 

vision techniques for detecting and classifying neonatal 

jaundice using color card methods. The paper examines 

approaches for skin detection, feature extraction, image fusion, 

feature selection, and classification. Key techniques include 

adaptive thresholding, convolutional neural networks, multi-

scale image fusion, and hybrid feature selection algorithms. 

The authors compare classifiers like KNN, SVM, and CNN for 

jaundice detection, with some approaches achieving over 98% 

accuracy. Non-invasive bilirubin estimation methods using 

skin color analysis are also reviewed, with some showing a 

strong correlation (up to 0.83) with blood test results. The paper 

highlights performance metrics like accuracy, sensitivity, and 

specificity for various methods. 

Hardalaç et al. [12] developed a mobile application for 

noninvasive classification of neonatal jaundice using image 

processing techniques. The study used images of 196 

newborns, with 156 for training and 40 for testing. Multiple 

linear regression was applied to RGB values from 38 points on 

the baby's body and the color chart to estimate bilirubin levels. 

The system achieved 92.5% accuracy in classifying jaundice 

cases into two groups: <10 mg/dL and ≥10 mg/dL bilirubin. 

Key advantages include low processing requirements, allowing 

use on basic smartphones, and a simple regression model for 

bilirubin estimation. The authors note that this approach could 

aid medical professionals in rapid, noninvasive jaundice 

screening, especially in resource-limited settings. While 

showing promise, the study had a relatively small sample size 

and encountered some errors for bilirubin levels near the 10 

mg/dL threshold. 

Abdulrazzak et al. [13] conducted a study on real-time jaundice 

detection in neonates using machine learning models. They 

compared the performance of four algorithms: SVM, k-NN, 

RF, and XGBoost, using a dataset of 767 infant images. The 

XGBoost model achieved the highest accuracy at 99.63%. The 

authors developed a user-friendly application using MATLAB 

App Designer, which utilized a USB webcam for real-time 

image capture and analysis. The system was tested on 10 NICU 

patients, showing 100% agreement with the TSB test results. 

The study addressed the need for non-invasive jaundice 

detection methods, potentially reducing the use of invasive 

procedures. However, challenges were noted in acquiring 

reliable neonatal images due to factors like inconsistent lighting 

and limited skin tone diversity in the dataset.  

The study conducted by Hashim et al. [14] focused on 

developing a cost-effective jaundice detection and treatment 

system using computer vision and color analysis. The data set 

included 20 infants' images from Ibn Al-Atheer Teaching 

Hospital, 16 internet images, and four manikin images. The 

methodology involved MATLAB-based image processing, 

including skin detection, ROI selection, and color space 

transformation. The system detected jaundice by analyzing skin 

color in the lab color space and used thresholding and 

morphological operations. Phototherapy was initiated with a 

blue LED light for detected jaundice. The models used were 

color-based skin detection and Otsu’s thresholding. The system 

accurately detected jaundice at TSB levels of 14 mg/dL and 

above within 1 second. 

These studies collectively highlight the significant progress 

made in the field of neonatal jaundice classification using ML 

and DL models. Each paper presents unique approaches and 

methodologies, contributing to the overall advancement of 

accurate and reliable jaundice detection systems. 
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Table 2: Comparative Analysis of Methodologies for Neonatal Jaundice Detection 

Criteria Egejuru et 

al. [10] 

Nayagi et al. 

[11] 

Hardalac et al. 

[12] 

Abdulrazzak 

et al. [13] 

Hashim et al. [14] Methodology 

Dataset Used Hospital data 

from 23 

neonates 

50 images of 

neonates with 

jaundice 

collected from a 

hospital 

Firat University Al-Elwiya 

Maternity 

Teaching 

Hospital 

Ibn Al-Atheer 

teaching hospital 

NJN Jaundice 

Dataset 

Algorithm 

Implemented 

Multi-Layer 

Perceptron-

WEKA 

K-NN, SVM, 

CNN 

Multiple Linear 

Regression 

SVM, K-NN, 

RF, and 

XGBoost 

K-NN, SVR, RF, CNN, 

MobileNet, 

EfficientNet, 

Vision 

Transformer 

Methodology 10-fold 

cross-

validation 

Color 

card method, 

adaptive 

thresholding, 

multi-scale 

image fusion 

Color 

calibration 

card, pixel 

similarity and 

white balancing 

methods 

Regions of 

interest, color 

spaces 

ROI selection, and 

color space 

transformation, 

Otsu’s 

thresholding 

Semantic 

Segmentation, 

Inference 

Testing 

Performance MAE, 

Accuracy, 

Precision, 

Recall 

Accuracy, 

Sensitivity, 

Specificity 

Accuracy Accuracy, 

Precision, 

Recall, F1 

Score, MCC 

Sensitivity, 

specificity, and 

accuracy 

Accuracy, 

Precision, 

Recall, F1-

Score, AUC 

Keys: 

K-NN: K Nearest Neighbor 

RF: Random Forest 

SVM: Support Vector Machine 

SVR: Support Vector Regression 

CNN: Convolutional Neural Networks 

MAE: Mean Absolute Error 

AUC: Area under Curve 

3. METHODOLOGY  

3.1 Dataset Used 
The NJN (Normal and Jaundiced Newborns) dataset [15] is a 

collection of images and data aimed at facilitating the diagnosis 

of neonatal jaundice. The dataset consists of 760 images of 

newborns, including 560 normal infants and 200 jaundiced 

infants, captured with an iPhone 11 Pro Max camera at a 

resolution of 1000 x 1000 pixels in JPEG format. 

 
Figure 1: Sample image from NJN dataset 

The images were obtained from Al-Elwiya Maternity Teaching 

Hospital in Baghdad, Iraq, with ethical approval and consent 

from legal guardians. The dataset includes newborns aged 2 to 

8 days with diverse birthweights and skin tones, captured from 

different angles and lighting conditions. In addition to the 

image data, the dataset provides an Excel sheet in CSV format 

containing the RGB and YCrCb channel values for each image, 

along with the corresponding status indicating whether the 

newborn is normal or jaundiced. The NJN dataset aims to 

provide researchers and healthcare professionals with a 

valuable resource for training AI systems and developing 

algorithms for real-time, non-invasive monitoring and accurate 

diagnosis of neonatal jaundice. The dataset’s diversity and 

comprehensive nature make it a significant contribution to the 

field of neonatal healthcare and the application of AI 

techniques in jaundice detection. 

3.2 Data Preprocessing 
The data preprocessing pipeline of the NJN jaundice dataset 

and started with downsizing of images from the size 1000x1000 

to 224x224. This initial step helped us save on computational 

power and time during the innumerable experiments that 

undertook without compromising on the quality of research.  

To maintain a rigorous testing and experimentation setup, 25% 

of the original dataset was partitioned as a test set, and 

augmentation was applied to the rest of the dataset. Following 

this, the models were tested, and an overfitting problem was 

found as the model's performance on testing data remained 

subpar.  

To enhance testing accuracy, object detection models were 

explored, and various versions of the YOLO [16] models were 

experimented with. These efforts resulted in improved testing 

accuracy and overall model performance on the test data. 

Despite these gains, object detection images consistently 

underperformed on a separate inference dataset, which notably 

differs from the original NJN dataset. Hence, the semantic 

segmentation [17] approach was used. The semantic 

segmentation model blacked out the entire background of the 

infant in the original dataset so as to focus better on the baby, 

as any features the model picks up related to the environment 

would be irrelevant. Training models on images of only infants 
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with no background helped to train models that not only 

perform well under the test dataset but also when given images 

of infants from different settings. Augmenting these semantic 

segmentation images also leads to an increase in the size of the 

dataset, which is favorable for model training.  

 
Figure 2: Data augmentation on semantic images 

 

Algorithm 1 Semantic Segmentation [17] with LRASPP 

MobileNet V3 and OpenVINO 

Require: Input folder input_folder, output folder       

output_folder 

Ensure: Segmented images in output_folder 

1: IMAGE_WIDTH ← 640 

2: IMAGE_HEIGHT ← 480 

3: Load segmentation model weights 

4: Load OpenVINO IR model 

5: for all images filename in input_folder do 

6:     if filename ends with .jpg, .jpeg, or .png then 

7:         img_path ← path to filename in input_folder 

8:         Read and preprocess image from img_path 

9:         Perform segmentation using PyTorch model 

10:       Convert PyTorch model to OpenVINO IR format if 

            not done 

11:       Run inference on OpenVINO model 

12:       Extract mask for desired class (e.g., 'person') 

13:       Invert mask to extract background 

14:       Create masked image with black background 

15:       Normalize pixel values to range [0, 1] 

16:       Save masked image to output_folder 

17:    end if 

18: end for 

 

Figure 3: Data split across Train, Validation, and Test sets   

3.3  Models 
The following four models were implemented: 

3.3.1 CNNs 
A custom convolutional neural network (CNN) [18] model, 

which is a type of deep learning architecture commonly used 

for image classification tasks was developed after several 

iterations of trials. The model consists of various layers that 

process the input data through a series of convolutional layers, 

as shown in Figure 4. 

 

Figure 4: CNN Model Architecture 

The custom CNN model depicted features multiple Conv2D 

layers, each followed by Batch Normalization to stabilize 

learning and enhance generalization. MaxPooling2D layers are 

employed for down-sampling, reducing spatial dimensions 

while retaining important features. Dropout layers are 

integrated to prevent overfitting, followed by a Flatten layer to 

convert the 2D feature maps into 1D vectors. Finally, Dense 

layers serve as the fully connected layers for classification. The 

model’s superior performance on distinct inference data but 

suboptimal test set performance may indicate overfitting to the 

training-validation-test set, leading to poor generalization on 

unseen data of similar distribution. However, its architecture 

seems adept at extracting relevant features from different 

domains, leading to consistent exceptional performance on the 

divergent inference dataset.  
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3.3.2 MobileNet 
The MobileNet V3 [19] architecture, is a convolutional neural 

network designed for efficient mobile and embedded vision 

applications. It consists of two main components: the 

MobileNet V3 backbone and the Segmentation Head. The 

MobileNet V3 backbone is responsible for extracting features 

from the input image at different resolutions (1/4, 1/8, and 

1/16). It uses depth wise separable convolutions, which are 

computationally efficient, along with various optimization 

techniques like squeeze-and-excite blocks and hard sigmoid 

activations. 

 

Figure 5: MobileNet V3 architecture 

The Segmentation Head takes the features from the backbone 

and performs semantic segmentation. It consists of several 

convolutional layers, bilinear upsampling operations, and a 

sigmoid activation function to generate the final segmentation 

output. If fine-tuned on a specific task, MobileNet V3's 

architecture can potentially perform well on inference tasks due 

to its efficient design and the ability to capture multi-scale 

features. Fine-tuning the model on a target dataset allows it to 

adapt its learned representations to the specific task, leading to 

improved performance. Additionally, the segmentation head 

can be modified or replaced to suit the desired inference task, 

such as instance segmentation. 

3.3.3 EfficientNet 
EfficientNet [21] is a family of convolutional neural network 

(CNN) models designed with a focus on maximizing accuracy 

while maintaining model efficiency.  

 

Figure 6: EfficientNet V2 architecture 

The EfficientNet architecture employs mobile inverted residual 

blocks as the main building blocks, which are designed to be 

computationally efficient and effective in capturing rich 

representations. If fine-tuned on specific inference tasks, 

EfficientNet models could potentially perform well due to their 

ability to learn rich and transferable feature representations 

from the pre-training on large-scale datasets. Additionally, the 

efficient design of the architecture allows for relatively fast 

inference times, making it suitable for deployment in various 

applications, including semantic segmentation, and image 

classification. 

3.3.4 Vision Transformers 
Vision Transformer (ViT) [21] is a transformer-based model 

that applies the transformer architecture, originally designed 

for natural language processing tasks, to computer vision tasks 

such as image classification and segmentation. This 

architecture is a type of attention based network [22]. The ViT 

architecture consists of a standard transformer encoder with an 

additional patch embedding layer that splits the input image 

into fixed-size patches and then flattens and projects them into 

a sequence of linear embedding. These embedding are then 

processed by the transformer encoder, which captures long-

range dependencies and generates contextualized 

representations for each patch. 

 

Figure 7: Vision Transformer architecture 

Fine-tuning a pre-trained ViT on downstream inference tasks 

would conceptually lead to better performance due to the 

transformer's ability to effectively capture global dependencies 

and model long-range interactions within the image. This 

property allows the model to develop a comprehensive 

understanding of the image context, which is crucial for 

accurate inference tasks such as segmentation and image 

captioning. 

 

Figure 8: Flowchart of our methodology 

4. RESULTS AND DISCUSSION 

4.1 Testing Data 
The Figure 9 presents the confusion matrices for four different 

models: CNN, MobileNet, EfficientNet, and Vision 

Transformer. The confusion matrices provide a visual 

representation of the classification performance of each model 

by displaying the predicted class labels against the true class 

labels. 
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Figure 9: Confusion matrix for testing data 

Overall, the confusion matrix shows a higher concentration of 

correct predictions (diagonal elements) for one class compared 

to the other, due to a class imbalance in the predictions. The 

transfer learning models also exhibits a similar pattern, with a 

higher number of correct predictions for one class over the 

other. 

The Efficient Net and Vision Transformer models, on the other 

hand, appear to have a more balanced distribution of correct 

predictions across both classes, suggesting better overall 

performance in distinguishing between the two classes 

Table 3: Model Evaluation on Test Data 

MODEL CLASS A AUC P R 
F1-

SCORE 

CNN 

Jaundice 

79% 0.57 
0.75 0.85 0.80 

Normal 0.34 0.22 0.27 

MobileNet 

Jaundice 

64% 0.62 
0.74 0.79 0.76 

Normal 0.26 0.20 0.22 

EfficientNet 

Jaundice 

82% 0.90 
0.66 0.66 0.66 

Normal 0.88 0.88 0.88 

Vision 

Transformer 

Jaundice 

83% 0.87 
0.87 0.90 0.88 

Normal 0.69 0.62 0.65 

Keys: 

- A: Accuracy  

- P: Precision 

- R: Recall 

- AUC: Area under Curve 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴) =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

Where,  

TP = True Positives 

TN = True Negatives 

FP = False Positives 

FN = False Negatives 

Figure 10 displays the Receiver Operating Characteristic 

(ROC) curves for the four models. The ROC curve is a 

graphical plot that illustrates the diagnostic ability of a binary 

classifier system as its discrimination threshold is varied. The 

area under the curve (AUC) provides a measure of the model's 

overall performance, with higher values indicating better 

classification performance. This metric is highly valuable in the 

case of the used datasets here that have a class imbalance. 

Accuracy simply measures the proportion of correctly 

predicted instances, which can be misleading here as normal 

class significantly outweighs the jaundice class. Hence, AUC 

evaluates the model's ability to distinguish between classes 

across different threshold settings, offering a balanced 

assessment by considering both true positive and false positive 

rates, making it more robust in imbalanced scenarios. 

𝐴𝑈𝐶 =  ∑(
𝐹𝑃𝑅𝑖+1 − 𝐹𝑃𝑅𝑖

2
) × (𝑇𝑃𝑅𝑖+1 + 𝑇𝑃𝑅𝑖)

𝑛−1

𝑖=1

 (5) 

 

Figure 10: ROC curve for test data 

Based on the ROC curves, the Vision Transformer and Mobile 

Net models seem to have the highest AUC values, indicating 

superior classification performance compared to the CNN and 

Efficient Net models. The CNN model appears to have the 

lowest AUC value, suggesting poorer classification 

performance relative to the other models. 

4.2 Inference Data 
Inference testing has always been an integral part of evaluating 

the performance of this methodology in real-life scenarios. 

During research, it is expected that the conditions under which 

the training data were collected will not match the conditions 

of the input data during real-world application. Variations in 

camera quality, zoom, tilt, and alignment are anticipated. To 

address this, images like Figure 11 were taken from the internet 

to test the four models. These images were procured from a 

GitHub repository [23]. 
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Figure 11: Sample image from the inference data for a) 

Jaundice and b) Normal class 

Figure 12 provides valuable insights into the performance of 

different neural network architectures on an image 

classification task. The first image shows the inference 

confusion matrices for four models: CNN, MobileNet, 

EfficientNet, and Vision Transformer.  

 

Figure 12: Confusion matrix for inference data 

These matrices illustrate the models' misclassifications 

between the jaundice and normal classes. MobileNet and 

EfficientNet seem to struggle more with misclassifying normal 

cases as jaundice, while MobileNet and Vision Transformer 

have higher confusion in classifying jaundice cases as normal. 

The Figure 13 presents the Receiver Operating Characteristic 

(ROC) curves for the same models. ROC curves are useful for 

evaluating the trade-off between true positive rate and false 

positive rate at different classification thresholds. 

Interestingly, the ROC curves for all four models are quite 

similar, with the CNN having significantly better performance, 

as indicated by their higher Area under the Curve (AUC) 

values. On the other hand, the EfficientNet that performs well 

on the test set fails to classify inference images. 

 

 

Figure 13: ROC curve of Inference Data 

Table 4: Model Evaluation on Inference Data 

MODEL CLASS A AUC P R 
F1-

SCORE 

CNN 

Jaundice 

90% 0.93 
1.00 0.86 0.92 

Normal 0.75 1.00 0.86 

MobileNet 

Jaundice 

70% 0.62 
1.00 0.57 0.73 

Normal 0.50 1.00 0.67 

EfficientNet 

Jaundice 

55% 0.68 
1.00 0.36 0.53 

Normal 0.40 1.00 0.57 

Vision 

Transformer 

Jaundice 
100% 1.00 

1.00 1.00 1.00 

Normal 0.69 0.62 0.65 

Keys: 

- A: Accuracy 

- P: Precision 

- R: Recall 

- AUC: Area under Curve 

5. CONCLUSION 
In this study, various deep learning models were explored to 

enhance the early detection of neonatal jaundice using medical 

imaging. It was observed that while the attention-based ViT 

model gives stellar performance on both testing and inference 

data, it is a clearly larger model (1.22 GiB), which cannot 

qualify as a frugal and lightweight solution. The CNN model 

shows immense potential due to its persistent performance on 

the inference dataset, which is a unique observation of its own. 

This research opens up the possible implementation of TinyML 

techniques like pruning, knowledge distillation, and even the 

Lottery Ticket Hypothesis. A lighter version of these models 

could potentially be integrated into clinical workflows to aid in 

the timely diagnosis and treatment of neonatal jaundice. 

Valiance Analytics is looking into building an end-to-end 

solution that might not be limited to use by clinical experts but 

also by a common man. Work on a larger dataset for both model 

training and inference is also desired, subject to availability.  
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