CFP last date
20 February 2025
Reseach Article

Protein Function Prediction using Protein-Protein Interaction Networks Involving MCL and Majority Rule

by Saima Khan, Fatema Tuj Jahura, Shiplu Hawladar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 27
Year of Publication: 2024
Authors: Saima Khan, Fatema Tuj Jahura, Shiplu Hawladar
10.5120/ijca2024923777

Saima Khan, Fatema Tuj Jahura, Shiplu Hawladar . Protein Function Prediction using Protein-Protein Interaction Networks Involving MCL and Majority Rule. International Journal of Computer Applications. 186, 27 ( Jul 2024), 1-7. DOI=10.5120/ijca2024923777

@article{ 10.5120/ijca2024923777,
author = { Saima Khan, Fatema Tuj Jahura, Shiplu Hawladar },
title = { Protein Function Prediction using Protein-Protein Interaction Networks Involving MCL and Majority Rule },
journal = { International Journal of Computer Applications },
issue_date = { Jul 2024 },
volume = { 186 },
number = { 27 },
month = { Jul },
year = { 2024 },
issn = { 0975-8887 },
pages = { 1-7 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number27/protein-function-prediction-using-protein-protein-interaction-networks-involving-mcl-and-majority-rule/ },
doi = { 10.5120/ijca2024923777 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-07-09T00:35:29.500168+05:30
%A Saima Khan
%A Fatema Tuj Jahura
%A Shiplu Hawladar
%T Protein Function Prediction using Protein-Protein Interaction Networks Involving MCL and Majority Rule
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 27
%P 1-7
%D 2024
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Protein is essential for all life processes, playing crucial roles such as providing structural integrity to the body and facilitating the transport of various substances within it. Understanding protein functions is critical for advancing biological science, as it aids in the improvement, regulation, and maintenance of numerous biological systems. Various methods exist to predict the functions of proteins with unknown roles, but many are time-consuming, complex, and costly. This study introduces a novel method that offers higher accuracy in predicting protein functions. It is easier, faster, and less expensive compared to many existing techniques. This new approach employs the Markov Clustering (MCL) Algorithm to cluster protein networks, followed by the application of the majority rule [3, 36] to predict protein functions.

References
  1. Pearson, W. R. (1996). Effective protein sequence comparison. In Methods in enzymology (Vol. 266, pp. 227-258). Academic Press.
  2. Stephen, F. A. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389-3402.
  3. Schwikowski, B., Uetz, P., and Fields, S. (2000). A network of protein–protein interactions in yeast. Nature biotechnology, 18(12), 1257-1261.
  4. Hishigaki, H., Nakai, K., Ono, T., Tanigami, A., and Takagi, T. (2001). Assessment of prediction accuracy of protein function from protein–protein interaction data. Yeast, 18(6), 523-531.
  5. Deng, M., Sun, F., Chen, T. (2002). Assessment of the reliability of protein-protein interactions and protein function prediction. In Biocomputing 2003 (pp. 140-151).
  6. Rives, A.W., Galitski, T. (2003). Modular organization of cellular networks. Proceedings of the national Academy of sciences, 100(3), 1128-1133.
  7. Vazquez, A. (2011). Protein interaction networks.
  8. Karaoz, U., Murali, T. M., Letovsky, S., Zheng, Y., Ding, C., Cantor, C. R., Kasif, S. (2004). Whole-genome annotation by using evidence integration in functional-linkage networks. Proceedings of the National Academy of Sciences, 101(9), 2888- 2893.
  9. Chua, H. N., Sung, W. K., Wong, L. (2006). Exploiting indirect neighbours and topological weight to predict protein function from protein–protein interactions. Bioinformatics, 22(13), 1623-1630.
  10. Pandey, G., Kumar, V., Steinbach, M. (2006). Computational approaches for protein function prediction: A survey.
  11. Ahmad, A., Dey, L. (2007). A k-mean clustering algorithm for mixed numeric and categorical data. Data Knowledge Engineering, 63(2), 503-527.
  12. Chen, S. H., Sun, J., Dimitrov, L., Turner, A. R., Adams, T. S., Meyers, D. A., ... Hsu, F. C. (2008). A support vector machine approach for detecting gene-gene interaction. Genetic Epidemiology: The Official Publication of the International Genetic Epidemiology Society, 32(2), 152-167.
  13. Bogdanov, P., Singh, A. K. (2009). Molecular function prediction using neighborhood features. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 7(2), 208-217.
  14. Li, M., Wu, X., Wang, J., Pan, Y. (2012). Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data. BMC bioinformatics, 13, 1-15.
  15. Cao, M., Zhang, H., Park, J., Daniels, N. M., Crovella, M. E., Cowen, L. J., Hescott, B. (2013). Going the distance for protein function prediction: a new distance metric for protein interaction networks. PloS one, 8(10), e76339.
  16. Xiong, W., Liu, H., Guan, J., Zhou, S. (2013). Protein function prediction by collective classification with explicit and implicit edges in protein-protein interaction networks. BMC bioinformatics, 14, 1-13.
  17. Tiwari, A. K., Srivastava, R. (2014). A survey of computational intelligence techniques in protein function prediction. International journal of proteomics, 2014.
  18. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M. (2005). Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics.
  19. Yu, F., Chen, M. H., Kuo, L., Talbott, H., Davis, J. S. (2015). Confident difference criterion: a new Bayesian differentially expressed gene selection algorithm with applications. BMC bioinformatics, 16, 1-15.
  20. Smyth, P. (1996). Clustering sequences with hidden Markov models. Advances in neural information processing systems, 9.
  21. Marcotte, E. M., Xenarios, I., Eisenberg, D. (2001). Mining literature for protein–protein interactions. Bioinformatics, 17(4), 359-363.
  22. Rain, J. C., Selig, L., De Reuse, H., Battaglia, V., Reverdy, C., Simon, S., ... Legrain, P. (2001). The protein–protein interaction map of Helicobacter pylori. Nature, 409(6817), 211-215.
  23. Chen, Y., Xu, D. (2003). Computational analyses of highthroughput protein-protein interaction data. Current protein and peptide science, 4(3), 159-180.
  24. Altschul, S. F., Madden, T. L., Sch¨affer, A. A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research, 25(17), 3389-3402.
  25. Pearson, W. R. (1996).
  26. Effective protein sequence comparison. In Methods in enzymology (Vol. 266, pp. 227-258). Academic Press.
  27. Pandey, G., Kumar, V., Steinbach, M. (2006). Computational approaches for protein function prediction: A survey.
  28. Bogdanov, M., Heacock, P., Guan, Z., Dowhan, W. (2010). Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from Escherichia coli. Proceedings of the National Academy of Sciences, 107(34), 15057-15062.
  29. Cao, M., Zhang, H., Park, J., Daniels, N. M., Crovella, M. E., Cowen, L. J., Hescott, B. (2013). Going the distance for protein function prediction: a new distance metric for protein interaction networks. PloS one, 8(10), e76339.
  30. Zhao, X. M., Chen, L., Aihara, K. (2008). Protein function prediction with high-throughput data. Amino Acids, 35(3), 517-530.
  31. Xiong, W., Liu, H., Guan, J., Zhou, S. (2013). Protein function prediction by collective classification with explicit and implicit edges in protein-protein interaction networks. BMC bioinformatics, 14, 1-13.
  32. Horvatovich, P., Lundberg, E. K., Chen, Y. J., Sung, T. Y., He, F., Nice, E. C., ... Hancock, W. S. (2015). Quest for missing proteins: update 2015 on chromosome-centric human proteome project. Journal of proteome research, 14(9), 3415-3431.
  33. Ning, Q., Ma, Z., Zhao, X., Yin, M. (2020). A novel succinylation sites prediction method incorporating K-means clustering with a new semi-supervised learning algorithm. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(1), 643-652.
  34. www.uniport.org . [Accessed May 2024]
  35. https://string-db.org/ . [Accessed May 2024]
  36. Jiang, J. Q., Wu, M. (2012, June). Predicting multiplex subcellular localization of proteins using protein-protein interaction network: a comparative study. In BMC bioinformatics (Vol. 13, pp. 1-15). BioMed Central.
  37. Vazquez, A., Flammini, A., Maritan, A., Vespignani, A. (2003). Global protein function prediction from protein-protein interaction networks. Nature biotechnology, 21(6), 697-700.
  38. Bonetta, R., Valentino, G. (2020). Machine learning techniques for protein function prediction. Proteins: Structure, Function, and Bioinformatics, 88(3), 397-413.
  39. https://europepmc.org/article/MED/23476125
  40. Khan, S., Tareeq, S. M. (2024). Protein Function Prediction Using Nearer Neighbor Proteins Interactions. International Journal of Computer Applications (IJCA), 186(17), pages-15- 22. 975, 8887.
Index Terms

Computer Science
Information Sciences
Protein
Prediction
Function

Keywords

Protein-protein interaction (PPI) network Markov clustering (MCL) algorithm protein function prediction majority