CFP last date
20 January 2025
Reseach Article

Scheduling for Energy Efficiency with Hadoop

by Sebagenzi Jason
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 23
Year of Publication: 2024
Authors: Sebagenzi Jason
10.5120/ijca2024923678

Sebagenzi Jason . Scheduling for Energy Efficiency with Hadoop. International Journal of Computer Applications. 186, 23 ( May 2024), 22-34. DOI=10.5120/ijca2024923678

@article{ 10.5120/ijca2024923678,
author = { Sebagenzi Jason },
title = { Scheduling for Energy Efficiency with Hadoop },
journal = { International Journal of Computer Applications },
issue_date = { May 2024 },
volume = { 186 },
number = { 23 },
month = { May },
year = { 2024 },
issn = { 0975-8887 },
pages = { 22-34 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number23/scheduling-for-energy-efficiency-with-hadoop/ },
doi = { 10.5120/ijca2024923678 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-05-31T22:32:03.058249+05:30
%A Sebagenzi Jason
%T Scheduling for Energy Efficiency with Hadoop
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 23
%P 22-34
%D 2024
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The main topic of this chapter is Hadoop energy efficiency scheduling, which includes an overview of the system, scheduling techniques, and the creation and application of a Hadoop energy control system. Additionally, testing, analysis, and introduction are provided for energy-efficient scheduling for multiple users.

References
  1. Leverich J, Kozyrakis C. On the energy (in)efficiency of Hadoop clusters. SIGOPS Oper Syst Rev. 2010;44(1):61–65.
  2. Chen Y, Ganapathi AS, Fox A, Katz RH, Patterson DA. Statistical workloads for energy efficient MapReduce : Technical Report Berkeley: UCB/EECS; 2010.
  3. Chen Y, Keys L, Katz. RH. Towards energy efficient MapReduce: Technical Report Berkeley: UCB/EECS; 2009.
  4. Nedevschi S, Popa L, Iannaccone G, et al. Reducing network energy consumption via rate-adaption and sleeping: Technical Report Berkeley: UCB/EECS; 2007.
  5. Polo J, Carrera D, Becerra Y, Beltran V, Torres J, Ayguad E. Performance management of accelerated MapReduce workloads in heterogeneous clusters. ICPP2010 2010:653–62.
  6. Xie J, Yin S, Ruan X, Ding Z, Tian Y, Majors J, et al. Improving MapReduce performance through data placement in heterogeneous Hadoop clusters. IPDPSW 2010:1–9.
  7. Polo J, Carrera D, Becerra Y, Beltran V, Torres J, Ayguadé E. Performance management of accelerated MapReduce workloads in heterogeneous clusters. Proceedings of the ICPP San Diego, CA: IEEE Press; 2010; p. 653–62.
  8. Kim KH, Buyya R, Kim J. Power aware scheduling of bag-of-tasks applications with deadline constraints on DVS-enabled clusters. CCGRID. 2007;85(10):541–548.
  9. Lee YC, Zomaya AY. Minimizing energy consumption for precedence-constrained applications using dynamic voltage scaling. CCGRID. 2009;9:92–99.
  10. Cooper BF, Sillberstein A, Tam E, et al. Benchmarking cloud serving systems with YCSB, SoCC’10 2010;10:143–54.
  11. Bryhni H, Klovning E, Kurc O. A comparison of load balancing techniques for scalable web server. IEEE Newt. 2000;7/8:58–63.
  12. Verma A, Cherkasova L, Campbell RH. Orchestrating an ensemble of MapReduce jobs for minimizing their makespan. IEEE Trans Dependable Sec Comput. 2013; April [online version].
  13. Verma A, Cherkasova L, Campbell RH. Two sides of a coin: optimizing the schedule of MapReduce jobs to minimize their makespan and improve cluster performance. p. 11–18 MASCOTS Washington, DC: IEEE Computer Society; 2012.
  14. Verma A, Cherkasova L, Campbell RH. ARIA: automatic resource inference and allocation for MapReduce environments. In: Proc. of ICAC; 2011.
  15. .
  16. Johnson S. Optimal two-and three-stage production schedules with setup times included. Naval Res Log Quart. 1954;1(1):61–68.
  17. 17.WordCount,.
  18. Beloglazov A, Abawajy J, Buyya R. Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Comput Syst. 2012;28(5):755–7
Index Terms

Computer Science
Information Sciences

Keywords

Hadoop; Map Reduce; Map Reduce Slots; scheduling algorithm; energy-efficient scheduling; dynamic management