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ABSTRACT 
The main topic of this chapter is Hadoop energy efficiency 

scheduling, which includes an overview of the system, 

scheduling techniques, and the creation and application of a 

Hadoop energy control system. Additionally, testing, analysis, 

and introduction are provided for energy-efficient scheduling 

for multiple users. 

Keywords 
Hadoop; Map Reduce; Map Reduce Slots; scheduling 

algorithm; energy-efficient scheduling; dynamic management 

1. INTRODUCTION 
The Apache Foundation created Hadoop, a distributed 

infrastructure framework that enables users to create distributed 

systems without having to first grasp the underlying details. 

High-speed computer clusters and storage can be completely 

utilized by users. The Hadoop Distributed File System (HDFS), 

which is implemented by Hadoop, is a distributed file system 

with high fault tolerance capabilities and is intended to be used 

with inexpensive hardware.  

Because of Hadoop's fast data transfer rate, it can be used with 

applications that need a lot of data to run. Data can be accessible 

as streams thanks to HDFS's relaxation of the POSIX file 

system's constraints. Hadoop is a well-known open-source 

project with a distributed computing focus that has drawn more 

and more interest. Utilized by numerous major corporations 

including Amazon, Facebook, Yahoo!, and IBM, it is 

extensively employed in numerous domains like log analysis, 

web search, advertising computing, and data mining. 

Hadoop was not designed with dynamic node management 

because it is a large-scale system. In a conventional Hadoop 

cluster, resource utilization and energy efficiency are low since 

Hadoop chooses the number of nodes after the system is up and 

running. As a result, studying Hadoop dynamic management 

can help it operate more effectively and efficiently. For larger 

Hadoop applications and better energy conservation, this 

enhancement would be really important. 

2. RESEARCH BACKGROUND 
A distributed process software platform for massive data sets is 

called Hadoop. It is scalable, dependable, and effective. 

Hadoop contains many functioning copies of data so that it can 

redistribute in the event of a node failure. This makes Hadoop 

dependable because it is predicated on the loss of compute 

storage and facilities.  

Its parallel architecture and increased processing speed through 

the use of parallel computing make it efficient. And lastly, 

Hadoop is scalable, able to manage data at the petabyte (PB) 

level. Furthermore, Hadoop is reasonably inexpensive because 

it runs on a standard server. Of all the modules of Hadoop, the 

Map Reduce and HDFS modules are the most crucial. All files 

are stored on the storage node of the Hadoop cluster using 

HDFS, which is the lowest level system in the system. Task 

Trackers and Job Trackers make up Map Reduce, the upper 

layer engine on HDFS. 

MapReduce's core concepts are parallel task decomposition and 

result fusion. HDFS is the core storage support system for 

distributed computing. The Map Reduce programming 

technique can be used to compute massive data sets in parallel, 

typically bigger than 1 terabyte (TB). The program's main goal 

is to simplify and map; it makes references to other functional 

programming languages and borrows some traits from vector 

programming languages. Map denotes mapping, while Reduce 

denotes simplification.  

With this architecture, program function on a distributed 

system is facilitated, and the programmer needs little expertise 

in distributed programming. To guarantee that all key mappings 

share the same key group, the current software implementation 

maps a group of key-value mappings into a new set of key-

value pairs by specifying a mapping function. Figure 9.1 

depicts a streamlined procedure for executing Map Reduce 

tasks.  

Slave nodes (Task Trackers) and a single master node (Job 

Tracker) make up the Map Reduce framework. All of a job's 

tasks are scheduled by the master node, which also assigns them 

to slave nodes and keeps track of how each task is carried out, 

including retrying unsuccessful attempts. However, slave nodes 

are only in charge of carrying out the tasks that the master node 

assigns them. The input data set is typically divided into many 

blocks by a Map Reduce job so that the Map task can process 

them concurrently.  

Prior to moving them to the Reduce job, the Framework will 

sort the Map's output. The HDFS contains the input and output 

data. unsuccessful attempts. However, slave nodes are only in 

charge of carrying out the tasks that the master node assigns 

them. The input data set is typically divided into many blocks 

by a Map Reduce job so that the Map task can process them 

concurrently.  

Prior to moving them to the Reduce job, the Framework will 

sort the Map's output. The HDFS contains the input and output 

data 
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Fig.1. Map Reduce flowchart. 

 
Highly fault tolerant, HDFS is made to run on inexpensive 

hardware. Large data volumes can be used with it, and it offers 

great throughput for accessing application data. With hundreds 

of server nodes on average, HDFS can automatically detect 

faults and recover quickly because any one of them could fail. 

HDFS is good to write and offers very high bandwidth data 

since its typical file sizes vary from gigabytes (GB) to terabytes 

(TB). The majority of HDFS data is read numerous times and 

written once.  

A file doesn't need to be modified once it's written, closed, and 

created. Data consistency and high throughput data access 

issues are made easier as a result. The HDFS cluster typically 

consists of a Name Node and several Data Nodes, as seen in 

Figure 9.2's Master/Slave design. Name Node is the core 

server; it answers to client requests and maintains the file 

system namespace. The management of the data kept on a 

certain node is the responsibility of the Data Node. With 

namespace, users can store any kind of data on the HDFS file 

system.  

A file is divided into one or more blocks for internal storage. 

The Name Node opens, closes, and renames files and 

directories that are stored in the file system namespace on a 

Data Node. It also establishes how the block is mapped to a 

particular Data Node. On HDFS, every data block is duplicated. 

One can adjust the quantity and dimensions of the duplicated 

blocks. HDFS files have a single writer and are only written 

once. The Data Node block status report from heartbeat signals 

is sent to the Name Node, which oversees the data copy 

operation. An inventory of every data block on a Data Node can 

be found in the block status report. 

Fig.2. HDFS architecture. 

3. RELATED RESEARCH WORK 
The concept of "divide and conquer" underpins the entire 

Hadoop operating system. The "divide" phase is represented by 

the Map process, and the "conquer" stage by the Reduce 

process. Figure 9.3 depicts the full procedure. 

 
Fig.3. Hadoop run structure. 

 
The following actions are part of the Map process: (1) read from 

the disk, (2) execute the Map task, then (3) write the outcomes 

to the disk in order of precedence. 
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The stages listed below are part of the Reduce process: First, 

sort and shuffle; next, perform the Reduce operation; and last, 

write the results to disk. 

The output of the Map job will be sent to the output file by the 

practitioner class during the third stage of the Map step. The 

Mapper output key will be delayed in memory until it reaches 

a predetermined quantity of data if Combiner is supplied, rather 

than being written to the output right away. This portion of the 

data will next be combined in the Combiner and moved to the 

Practitioner. 

 Although it reduces performance, data is written to disk at this 

point to increase system durability. The Map key will be passed 

from the Hadoop framework to the Reducer during the initial 

Reduce phase. The HTTP protocol is used in this stage to 

transmit data remotely. Based on the idea that Hadoop's fault 

tolerance, which boosts task concurrency and speeds up 

response times, the Hadoop Online Prototype allows data from 

various tasks to interact through a pipeline in the third Map 

phase. 

Scheduling algorithms 

Dynamic management of Hadoop clusters  
Already, research teams have devoted a lot of time to studying 

Hadoop. A Stanford team believes that there is still plenty to be 

done to save energy in Hadoop. For the placement of node data, 

they recommend utilizing a new approach [1]. U.C. Berkeley 

developed a model based on node, working time, and power 

that they claimed produced good results [2,3]. Moreover, they 

think that maximizing performance and energy efficiency are 

equally important [4]. To lower Hadoop's energy usage, Swiss 

scientists made modifications to the block allocation algorithm 

[5]. 

But none of these study examples could be applied in a dynamic 

setting because they were all focused on the allocation of static 

data blocks. Optimizing the heterogeneous Hadoop cluster was 

the main focus of Oban University researchers [6]. The Hadoop 

performance management and Map Reduce scheduling were 

also examined by researchers at the Technical University of 

Catalonia [7]. Using the adaptive Map Reduce scheduler to 

satisfy user-defined high-level performance goals while 

transparently and effectively utilizing hybrid systems' 

capabilities was the main emphasis of their research.  

They discussed the modifications made to the adaptive 

scheduler to maximize the use of the underlying hybrid systems 

by enabling it to co-schedule jobs that are accelerable and 

nonaccelerable on the same heterogeneous Map Reduce cluster. 

Though energy consumption is not taken into account in the 

cluster, their research is more in line with the tight integration 

of the hardware and scheduling efficiency. Furthermore, 

researchers frequently employ dynamic voltage regulation to 

lower energy usage in [8,9]. The drawback is that it needs 

specialized hardware environments. 

According to Intel study, there is a positive association between 

average usage and energy consumption inside the cluster. It is 

evident from the figure that energy usage rises with average 

utilization. In order to lower the average utilization and hence 

lower energy consumption, this architecture offers the ability to 

dynamically suspend and resume the nodes. Software is used to 

accomplish this; no specialized hardware is needed (Figure 

9.4). 

 
Fig.4. Power versus utilization. 

 
This section presents Dynamic Adjusting and Negative 

Feedback (DANF), a novel Hadoop dynamic load balancing 

technique with the following features: 

• Restarting and suspending the nodes in accordance with the 

cluster load lowers average utilization, node running time, and 

energy consumption. 

• Increasing the stability of the cluster through feedback. 

• Promote load balance, decrease load variance, and prevent 

jitter by using the jitter coefficient. 

• It is simple to expand and use this design. 

Load modeling 
We need to construct a model in order to assess a node's load. 

According to research, a system's processor uses the most 

amount of energy—roughly 40% of all energy used in the 

system [10]. As a result, we take it into account while building 

our model. Another system module that uses energy is memory. 

Load information 
The majority of load models in use today solely account for 

CPU usage. We employ a vector in two dimensions with a 

coefficient of p. Let a node j have a load 

vector , We figure out its modulus, 

so the load is 

 
Let's say that there are n nodes in a cluster, and the average load 

in it is 

 

Therefore, the range is (0,1), and p can be set based on various 

jobs; if the task requires a lot of CPU power, for example, p can 

be greater, around 0.8. On the other hand, we typically specify 

a smaller p when a task demands a high memory usage. 

Period 
Since this value is variable, we must choose an observation 

period in order to compute it. We won't be able to get the most 
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recent data if the timeframe is excessively long. But, an 

excessively short interval will cause the result to become 

contaminated by too many queries. Experiments indicate that 

the duration depends on the task. An intense computational 

program should therefore use a longer length of time and a data-

intensive application should use a shorter period of time in 

order to waste less energy. 

Negative feedback mechanism 
A control system has numerous safeguards against abuse. 

Negative feedback in a mathematical model denotes a negative 

feedback coefficient. A fraction of the input is added as 

negative feedback to counteract changes in the output: 

 

Within the field of automatic control theory, the feedback 

method of root—which is based on Newton's method—is 

frequently employed in systems that automatically adjust, 

including those that automatically adjust for combustion, steam 

temperature, transportation, and bypass. The following is the 

primary formula: 

 

where A has a close assignment to Xn. Assuming that we 

already know the beginning value of Xn in this case, we can 

apply Eq. (9.4) to get the DANF load in ti-1 and ti. 

 

4. PROPOSED APPROACH 
Scheduling conditions 
The load from Eq. (9.1) can use the default or user-defined 

threshold  and . Here,  is the lower threshold 

and  is the upper threshold. When 

, the system is in ideal status and no steps are required. 

When , the system has a low load and we 

should suspend nodes one by one until they system is in ideal 

status. When , the system has a high load and 

we must restart the suspended nodes. 

Choosing a node to suspend 
In a dynamic management system, one of the primary functions 

of DANF is node selection. As of the now, multiple [11]: 

a. Random 
This algorithm is straightforward and simple to comprehend. 

When the system hits the threshold, it chooses a node at 

random. 

b. Round-Robin 
Each node is assigned by this algorithm in a circular sequence, 

and it suspends in accordance with this order. 

c. Minimum load 
The minimum load node is chosen for suspension by this 

algorithm, which orders all node loads. 

Upon examining these techniques, we see that if a system 

undergoes a major change and the suspend and restart 

operations take place on the same node, this could result in a 

considerable increase in I/O operations and negatively impact 

performance. We include a jitter coefficient while choosing the 

node in the DANF algorithm to lessen jitter. 

Using Eq. (9.1) to calculate the load on each node, we add a 

jitter coefficient k to improve system stability: 

 

Here,  is a unit time 

period  and k has a range greater than 0; 

considering k, the node load is 

 

Currently, the coefficient would prevent the small load node 

with a substantial change from being chosen, significantly 

enhancing stability. The approach works well to stop repeated 

scheduling on the same system node. 

Choosing a node to restart 
We need to restart one or more nodes when the system reaches. 

As opposed to suspension, we eliminate the node from the 

queue according to rising load order by employing the principle 

of "first in, first out" (FIFO). 

Pseudocode 
DANF algorithm is provided in Algorithm 1. 

 
ALGORITHM 1.  DANF algorithm. 

Energy control 

System architecture 
We used Java to implement this DANF technique. Node control 

modules, remote control, and resource gathering are all part of 

the system. 

Detailed design 

Resource collection 
The implementation of the resource collection module involves 

the reading of the Linux file system procfs. In operating 

systems similar to UNIX, a unique file system called procfs 

(also known as the proc file system) displays details about 

https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#eqn1
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#f0105
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processes and other system data. As a result, we can use it to 

get memory and CPU information. a. Memory information 

Total: The first line in /proc/meminfo; 

Available: The second line in /proc/stat; 

Mem=1 - Available/Total. 

b. CPU 

Total: The first line in /proc/stat; 

Each CPU: The second line /proc/stat;from CPU0-CPUn; 

user, nice, sys, idle: The following four column numbers; 

We read these data twice, we present with “user_1 or user_2”, 

user+sys is the used CPU. 

CPU=(int)rintf(((float)((user_2+sys_2+nice_2)-

(user_1+sys_1+nice_1))/(float)(total_2−total_1) 

)*100).Remote control 

Security SHell (SSH) is used in the implementation of the 

remote control module. In this case, an SSH connection can be 

established in Java thanks to the third-party lib Ganymed SSH-

2 for Java. 

a. Create a connection using an IP 

Connection conn=new Connection(hostname); 

b. Using username and password to log in 

booleanisAuthenticated=conn.authenticateWithPassword(user

name,password); 

c. Begin a session and run the Linux shell 

Session sess=conn.openSession(); 

sess.execCommand(“last”); 

d. Receive the response from the console 

InputStreamstdout=new StreamGobbler(sess.getStdout()); 

BufferedReaderbr=new BufferedReader(new 

InputStreamReader(stdout)); 

e. Get the status flag “0” success; “not 0” Failed 

System.out.println(“ExitCode: ”+sess.getExitStatus()); 

f. Close cession and connection 

sess.close(); 

conn.close(); 

Node control 

A shell and the Hadoop configuration file are used to 

implement node control. Nodes can be modified by the 

master to initiate and stop them. 

Add node: 

./hadoop-daemon.sh start datanode; 

./hadoop-daemon.sh start tasktracker. 

Delete node; 

a. Add the following in core-site.xml in master node 

<property> 

<name>dfs.hosts.exclude</name> 

<value>/data/hadoop-0.20.2/conf/excludes</value> 

</property> 

dfs.hosts.exclude: node to be deleted 

/data/hadoop-0.21.0/conf/excludes: The file and 

directory to be deleted. 

b. Using Java to write the node to be deleted in 

/data/hadoop-0.20.2/conf/excludes. 

c. Refresh Name Node 

Hadoopdfsadmin –refreshNodes 

The command can dynamic refresh dfs. hosts and dfs. 

hosts. Exclude without restart NameNode. 

d. Using remote SSH 

Stop datanode 

./hadoop-daemon.sh stop datanode 

Stop Tasktracker 

./hadoop-daemon.sh stop tasktracker 

Energy-efficient scheduling for multiple users 

Problem formulation 

[12–14] introduces a Map Reduce performance 

model. The model predicts how long the Map and 

Reduce stages will take to complete depending on the 

size of the input data set and the resources allotted. 

Definition 1 

Slots for Map Reduce. Every node in a Hadoop cluster 

can work on P Map and P Reduce tasks at the same time, 

depending on how the cluster is configured. Thus, this 

Hadoop cluster has P×P Map Reduce slots. 

Definition 2 

Waves of execution. Task assignment occurs in many 

rounds, referred to as execution waves, if the number of 

Map Reduce tasks exceeds the number of Map Reduce 

slots in the cluster. 

Figure 9.5 shows an example executed in two waves of 

20×20 Map Reduce slots. 

 
Fig.5. Execution example of TeraSort [15] in a 20×20 Map 

Reduce slot. 

https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#f0030
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#bib15
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Consider a job represented as a set of n tasks processed 

by P×P Map Reduce slots (workers) in Hadoop environments. 

Each Map Reduce job consists of a specified number of Map 

and Reduce tasks. The job execution time and the specifics of 

the execution depend on the amount of resources (Map and 

Reduce slots) allocated for the job. A simple abstraction is 

adopted [12], where each Map Reduce job, Ji, is defined by the 

durations of its Map and Reduce stages, mi and ri, 

i.e., Ji=(mi, ri). Let us consider the execution of two 

independent Map Reduce jobs, J1 and J2, in a Hadoop cluster 

with a FIFO scheduler. 

There are no data dependencies between these jobs. 

Therefore, once the first job completes its Map stage and 

begins processing its Reduce stage, the next job can start its 

Map stage execution with the released Map resources in a 

pipelined fashion. There may be “overlap” in the executions of 

the Map stage of the next job and the Reduce stage of the 

previous one. We further consider the following problem. 

Let  be a set of n Map Reduce jobs 

with no data dependencies between them. 

Here,  requests  Map Reduce slots and has Map 

and Reduce phase durations (mi, ri), respectively. 

The system scheduler can change a job’s Map Reduce slots 

allocation depending on available resources. Let T be the 

makespan of all n jobs. We aim to determine an order (a 

schedule) of execution of jobs  such that the makespan 

of all jobs is minimized. Let us set the end-time of the Map 

stage and start-time of the Reduce stage of job Ji as , 

respectively. Thus, the actually allocated Map Reduce slots for 

job Ji are , the max available Map Reduce slots in the 

Hadoop cluster is P×P. Formally, the problem of minimizing 

the makespan, T, can therefore be formulated as 

 
where the available capacity restriction is expressed as 

Equation (9.9), meaning that the number of Map Reduce slots 

that are actually allotted to a task (Pi) cannot exceed the total 

number of Map Reduce slots in the system (P). The time no 

overlapping restriction for the Map and Reduce stages for a 

single work is expressed in equation (9.10), which states that 

the end-time of the Map stage for a given job cannot be smaller 

than the start-time of the Reduce stage. 

We suggest a new method to reduce the makespan of a set of 

given Map Reduce jobs based on the phrasing of the problem. 

 

 

Revised Johnson’s algorithm and HScheduler 
Let's first review the traditional Johnson's method [16] and see 

if it can be directly applied to Map Reduce scheduling before 

introducing the new one.  

Johnson’s algorithm revisited 

"There are n items which must go through one production stage 

or machine and then a second one," according to the original 

Johnson's algorithm [16]. Every stage has a single machine. A 

machine can only have one object on it at once. In order to 

modify the Map Reduce paradigm, we first describe the 

resources as Map Reduce slots and then use Johnson's method 

by treating the Map and Reduce stage resources as a single unit 

(similar to a single machine). 

Using a similar notation to the one found in [12], let us 

consider a collection of n jobs, where each job, Ji, is 

represented by the pair, mi, ri, of Map and Reduce stage 

durations, respectively. Each job Ji=(mi, ri) with an 

attribute Di is defined as follows: 

 

The first argument in Di is called the stage duration and 

denoted as . The second argument is called the stage type 

(Map or Reduce) and denoted as . Notice that when ri=0, 

Johnson’s algorithm reduces to the shortest process time first 

algorithm, which is known to be optimal for minimizing total 

finish (flow) time of all jobs. Algorithm 2 presents the 

pseudocode of the Revised Johnson’s algorithm for Map 

Reduce. First, it sorts all n jobs from the original set J in the 

ordered list L in such a way that job Ji precedes job Ji+1 if and 

only if . It finds the 

smallest value among all durations, if the stage type 

in Di is m (i.e., it represents the Map stage), then the job Ji is 

placed at the head of the schedule. Otherwise, Ji is placed at the 

tail. Then, the allocated job is removed and other jobs are 

considered in the same fashion. The complexity of Johnson’s 

algorithm is dominated by the sorting operation and thus 

is O(n log n). 

Theorem 1 

For a two-stage production system, Johnson's algorithm 

determines the theoretical bottom bound of total elapsed time 

(makespan) when every work moves through the identical two 

stages and uses every resource available. 

https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#bib12
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#bib12
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#f0110
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ALGORITHM 2 Revised Johnson’s algorithm for Map 

Reduce. 

 
 

Johnson [16] offers a thorough proof of Theorem 1. The 

optimal makespan, or theoretical lower bound, can be found 

using Johnson's technique in the following ways: 

1. Taking into account that the Map and Reduce stages have n 

tasks. For a given Hadoop cluster of P machines (slots), let 

denote the work time of the ith task for the Map phase and 

denote the corresponding time for the Reduce phase. 

2. Then, the optimal total elapsed time (makespan) is as 

follows: 

 

Observation 1 

The assumptions of the traditional Johnson's algorithm for 

a two-stage production system and Map Reduce job processing 

match exactly if each job uses all Map or all Reduce slots 

during processing. Next, the theoretical bottom bound of 

lowering the makespan of all Map Reduce jobs can be found by 

utilizing Johnson's technique. 

Example 1 

We replicate the five Map Reduce jobs provided in [12] in 

Figures 9.6(a) and (b), correspondingly. Figure 9.6A displays 

the lengths of the Map and Reduce stages for every job, while 

Figure 9.6B use Johnson's technique to construct an ordered list 

of the five jobs. The ideal sequence, as per Johnson's approach, 

is δ=(2, 5, 1, 3, 4). Eq. (9.13) may be used to get the overall 

delay time for this sequence, which equals 4 units. Using Eqs. 

(9.12) and (9.13), the total elapsed time (makespan) is 47 units. 

The worst-case outcome, or 78 units, can be achieved as the top 

bound if the jobs are rearranged in sequence. 

 
Fig.6. Five Map Reduce jobs examples by one cluster. (A) 

Before applying the algorithm; (B) After applying the 

algorithm. 

Observation 2 

In the case of numerous Map Reduce tasks, the actual 

makespan should additionally account for extra process 

timings, such as job setting up, migration, and dispatch, in 

addition to the Map and Reduce stages. Based on Eqs. 

(9.12) and (9.13), the actual makespan is adjusted 

to , where c0 is a weight factor that depends 

on the job types. 

We will validate Observation 2 in the performance evaluation 

section. 

Observation 3 

The length of the job stage is directly correlated with the 

quantity of resources allotted (Map and Reduce slots). The look 

of the jobs can be altered if the system scheduler allots more or 

fewer Map Reduce slots than are necessary. 

Example 2 

Examine Scenario 2 in [12]: Using Example 1, let jobs J1, 

J2, and J5 consist of 30 Map and 30 Reduce tasks, and jobs J3 

and J4 consist of 20 Map and 20 Reduce tasks, with all other 

configurations remaining unchanged from Example 1. We 

replicate the findings in Figure 9.7, which shows how these five 

Map Reduce jobs are executed based on the created Johnson's 

schedule, ϴ=(J2, J5, J1, J4, J3). Even though the system has 

30×30 Map Reduce slots available, [12]    

We develop a new method called HScheduler to effectively 

plan MapReduce processes to reduce makespan, based on 

Observations 1-3 and Claim 1. The MapReduce HScheduler 

algorithm's pseudocode is shown in Algorithm 3. First, by 

recalculating the jobs' real durations based on available slots, it 

assigns all available MapReduce slots to a specified set of jobs. 

By executing execution waves in varying  

 

amounts depending on available slots, this modifies their Map 

and Reduce durations. It then scheduled all of the revised jobs 

https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#eqn12
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#eqn12
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#eqn13
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#enun3
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using the Revised Johnson's method. All available MapReduce 

slots to a specified set of jobs. By executing execution waves 

in varying amounts depending on available slots, this modifies  

Already, research teams have devoted a lot of time to studying 

Hadoop. A Stanford team believes that there is still plenty to be 

done to save energy in Hadoop. For the placement of node data, 

they recommend utilizing a new approach [1]. U.C. Berkeley 

developed a model based on node, working time, and power 

that they claimed produced good results [2,3]. Moreover, they 

think that maximizing performance and energy efficiency are 

equally important [4]. To lower Hadoop's energy usage, Swiss 

scientists made modifications to the block allocation algorithm 

[5]. 

But none of these study examples could be applied in a dynamic 

setting because they were all focused on the allocation of static 

data blocks. Optimizing the heterogeneous Hadoop cluster was 

the main focus of Oban University researchers [6]. The Hadoop 

performance management and Map Reduce scheduling were 

also examined by researchers at the Technical University of 

Catalonia [7]. Using the adaptive Map Reduce scheduler to 

satisfy user-defined high-level performance goals while 

transparently and effectively utilizing hybrid systems' 

capabilities was the main emphasis of their research.  

They discussed the modifications made to the adaptive 

scheduler to maximize the use of the underlying hybrid systems 

by enabling it to co-schedule jobs that are accelerable and 

nonaccelerable on the same heterogeneous Map Reduce cluster. 

Though energy consumption is not taken into account in the 

cluster, their research is more in line with the tight integration 

of the hardware and scheduling efficiency. Furthermore, 

researchers frequently employ dynamic voltage regulation to 

lower energy usage in [8,9]. The drawback is that it needs 

specialized hardware environments. 

According to Intel study, there is a positive association 

between average usage and energy consumption inside the 

cluster. It is evident from the figure that energy usage rises with 

average utilization. In order to lower the average utilization and 

hence lower energy consumption, this architecture offers the 

ability to dynamically suspend and resume the nodes. Software 

is used to accomplish this; no specialized hardware is needed 

(Figure 9.4). 

 

Their Map and Reduce durations. It then scheduled all of 

the revised jobs using the Revised Johnson's method. 

expects that jobs J3 and J4 only need 20×20 Map Reduce slots.  

amounts depending on available slots, this modifies their Map 

and Reduce durations. It then scheduled all of the revised jobs 

using the Revised Johnson's method. All available MapReduce 

slots to a specified set of jobs. By executing execution waves 

in varying amounts depending on available slots, this modifies 

their Map and Reduce durations. It then scheduled all of the 

revised jobs using the Revised Johnson's method. 

expects that jobs J3 and J4 only need 20×20 Map Reduce slots.  

Nevertheless, the outcome differs significantly from [12] if 

we permit any task to utilize all of the system's Map Reduce 

slots during execution. This may be done simply in Hadoop 

(e.g., by dividing the big input files according to the number of 

Map Reduce slots that are available). In Scenario 2 [12], jobs 

J3 and J4 are now able to utilize every 30x30 Map Reduce slot 

that is available for the same example. In this case, J3 and J4 

will have map and reduce durations of and, respectively, and 

(4, 20), and, respectivelyCompared to using only 20x20 Map 

Reduce slots, both are shorter. Thus, the makespan will be, as 

Figure 9.8 illustrates, where X1=1. Compared to the outcome 

of the two pools technique, this result is 12% less [12]. The 

fundamental tactic for our outcomes is thus the following idea. 

 
Fig.7. Five Map Reduce jobs executions in one cluster. 

 

 
Fig.8. New result of five MapReduce jobs execution. 

Claim 1 

If a job requests more or less Map Reduce slots than the 

system can accommodate, the system scheduler may decide to 

allocate a higher or smaller number of Map Reduce slots for the 

work. 

Assuming that there are P×P MapReduce slots in the given 

Hadoop cluster, then there are two Jobs A and B and each has 

requested MapReduce slots, R, and time duration, TA, TB, 

respectively. Note their theoretical makespan, T1, can be easily 

computed using Eqs. (9.12) and (9.13) directly. Then, the 

actual makespan of job A and B using all available slots (P) is 

(TA): 

 

We develop a new method called HScheduler to effectively 

plan MapReduce processes to reduce makespan, based on 

Observations 1-3 and Claim 1. The MapReduce HScheduler 

https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#eqn12
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#eqn13
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algorithm's pseudocode is shown in Algorithm 3. First, by 

recalculating the jobs' real durations based on available slots, it 

assigns all available MapReduce slots to a specified set of jobs. 

By executing execution waves in varying amounts depending 

on available slots, this modifies their Map and Reduce 

durations. It then scheduled all of the revised jobs using the 

Revised Johnson's method. 

The complexity of HScheduler is dominated by Johnson’s 

algorithm and thus is O(n log n). 

 
ALGORITHM 3 HScheduler. 

Performance evaluation 

Evaluation platform 

We construct a 16-node Hadoop cluster with 512 M RAM 

and a dual-core Pentium CPU on each node. Installed on every 

node was CentOS 6.3 and Hadoop 0.21. 

5. REPORT OF THE PAPER 
a. Energy control system 

We use TeraSort as an example of an intensive calculation 

task and Hadoop WordCount as an example of a huge memory 

task. While TeraSort data are produced by TeraGen, 

WordCount data are sourced from Wikipedia. The data sizes 

for these two projects are 1G, 2G, 4G, and 8G in addition to 

500 megabytes (M). We choose a threshold of 0.2 for the lower 

threshold and 0.8 for the higher threshold, and we set the time 

period to 10 s. Whereas p is set to 0.8 in TeraSort, it is set to 

0.5 in WordCount. We note the mean result after five 

repetitions of each test. 

b. Energy-efficient scheduling 

For our trials, we employ workloads that are comparable to 

those in [12]:  

According to research done on the Yahoo! M45 cluster, this 

workload reflects a variety of MapReduce tasks [12]. The 

lengths of the Map and Reduce phases are derived from actual 

data from WordCount [17] and TeraSort [15], whereas the 

number of Map and Reduce tasks is produced using a normal 

distribution.  

• Unimodal: the workload is measured using a single scale 

factor for the total workload, meaning that each job's scale 

factor is uniformly drawn from [1,10] and a Normal distribution 

with parameters round(N(154, 558)0.1) for the number of Map 

tasks and round(N(19,145)0.1) for the number of Reduce tasks. 

This is tested using a set of 50 WordCount [17] (with mean Map 

duration 65 s and mean Reduce duration 57 s, uniformly 

distributed) and 50 TeraSort jobs [15] (with mean Map duration 

73 s and Reduce duration 58 s, uniformly distributed). 

• Bimodal: 20 TeraSort tasks from [15] (with mean Map length 

287 s and Reduce duration 306 s, uniformly distributed) and a 

subset of 20 WordCount from [17] (with mean Map duration 

448 s and mean Reduce duration 413 s, uniformly distributed) 

are situated, respectively. In this instance, the remaining jobs 

(20%) are scaled using [8,10] and a Normal distribution with 

parameter round(N(154, 558)_0.3) for the number of Map tasks 

and round(N(19,145)_0.3) for the number of Reduce tasks. 

Eighty percent of the jobs are scaled using a factor evenly 

distributed between [1,2]. This simulates workloads with a high 

percentage of short jobs and a low percentage of long jobs. 

All results are obtained by the average of six runs. 

6. RESULTS ANALYSIS 
Energy control system 

a. Load balance test 

We can compare the load balance in order to assess the 

selected node algorithm. The variance is computed using the 

following formula in this case. 

 

Figures 9.9 and 9.10 show the WordCount and TeraSort 

results, respectively, for the Random, Round-Robin, 

Minimum load, and DANF tests. 

 
Fig.9. WordCount variance comparisons. 

 

 
Fig.10.TeraSort variance comparisons. 

 

https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#f0050
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#f0055
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It is evident from the result that TeraSort has a higher variance 

than WordCount. Our technique is more efficient and has a 

better load balance than other algorithms since the DANF has 

a smaller variance for both results when compared to others 

[18]. 

b. Energy test 

 

Here,  is the system’s idle energy consumption,  is 

the system’s full load energy consumption, u is the average 

utilization in , and  is the system’s boot time. 

Further,  is the node working time and  is the node idle 

time. For , the total node idle time is the sum 

of the idle time for all nodes (Tables 9.1–9.3). 

Table 9.1 WordCount total working time 

  500 MB 1G 2G 4G 8G 

Without 

dynamic 

Management 

systems 

111 153 250 430 836 

 

Table.2 WordCount idle nodes 

  500 MB 1G 2G 4G 8G 

Idle 

nodes 

1 1 2 3 4 

Table.3 WordCount total idle time 

  
500 

MB 

1

G 

2

G 

4

G 
8G 

Without 

DANF 

dynamic 

manage

ment 

system 

(s) 

32 96 20

8 

44

8 

92

8 

With 

DANF 

dynamic 

manage

ment 

system 

(s) 

40 12

0 

25

0 

57

0 

11

40 

Fig.11. is the comparison (Tables 9.4–9.6). 

 
Fig.12. WordCount total idle time comparison. 

 
Fig.13. TeraSort total idle time comparison. 

 

We can see that DANF lengthens the idle time in both 

experiments from Figures 9.11 and 9.12. Tests in TeraSort and 

WordCount clearly demonstrate the benefit of DANF. 

In Eq. (9.14), u is the average utilization of system boot time, 

we use Ganglia to record: (Figures 9.13 and 9.14). 

 

https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#t0010
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#t0020
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#f0060
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#t0025
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#t0035
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#eqn14
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#f0070
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#f0075
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Fig.15. WordCount average utilization comparison. 

 

 
Fig.14. TeraSort average utilization comparison. 

 

Since Tall is the same in Eq. (9.14), Pmin and Pmax are 

constants. As a result, there is a proportionality between 

average use and energy consumption. Pmin = 50 W and Pmax 

= 300 W were measured in our experimental setup. The data 

that compare energy use are data 9.15 and 9.16. 

 

  
Fig.16. WordCount system energy consumption 

comparisons. 

 

 

 
Fig.17. TeraSort system energy consumption comparisons. 

As can be seen from the figure, the system's energy usage was 

lower with DANF than it was with the previous setup. The 

average energy decrease for all DANF test cases is 14%. 

 

Energy-efficient scheduling 

We compare the following algorithms: 

• Random Order (Rand): using the work IDs as a guide, this 

algorithm schedules each job in a different order. 

• Johnson's Algorithm in Reversed Order (R_Johnson): this 

algorithm schedules all jobs in the Revised Johnson's 

algorithm's reverse order. It is demonstrated in [16] to be the 

worst case scenario in terms of makespan of all tasks. 

• HScheduler: this is our proposed algorithm. 
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• The traditional Johnson's algorithm, Johnson T, only takes 

into account the extra process time resulting from job setup, 

dispatch, migration, and other factors in a real Hadoop cluster. 

As such, it only functions as a theoretical lower bound. 

• An additional strategy to reduce makespan was suggested in 

[12]: balanced pools (BP). To reduce the makespan, it divides 

the Hadoop cluster into two balanced pools and then assigns 

each job to the best pool. 

For the BalancedPools algorithm, two pools with 12 and 24 

MapReduce slots each are set, and 18 data nodes with two 

MapReduce slots each are set for all tests. 

An analysis of four algorithms' makespan comparison is 

shown in Figures 9.17 and 9.18. The results of Johnson's 

algorithm represent the theoretical lower bounds, whereas 

R_Johnson represents the worst case scenario and serves as the 

upper limitation of makespan. Compared to HScheduler, Rand 

and R_Johnson have larger makespans. On average, 

HScheduler has a makespan that is 8–10% shorter than BP. In 

Unimodel and Bimodel, the average difference between 

HScheduler and the theoretical lower bound is 15% and 13%, 

respectively.  

This is due to the fact that in an actual Hadoop context, 

HScheduler has extra process times, such as job setup, dispatch, 

and migration. We tested 50 TeraSort data (mean Map length 

73 s and Reduce duration 58 s, uniformly distributed) without 

taking Bimodel or Unimodel into account, as shown in Figure 

9.19. Similar results from comprehensive genuine experiments 

are observed; but, due to page limits, they are not included. 

 

 
Fig.18. Comparison of makespan in Unimodel (in seconds). 

 
Fig.19. Comparison of makespan in Bimodel (in seconds). 

 

 
Fig.20. Comparison of makespan (in seconds) of 50 

TeraSort jobs. 

 

7. CONCLUSION 
This chapter presented prior Hadoop research and 

covered the fundamental ideas and design of Hadoop, the 

MapReduce process, and the HDFS file system. The 

fundamental strategy of DANF, which combines 

Hadoop's energy efficiency and load balancing 

dynamically, was put into practice and tested. In 
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addition, an energy-efficient scheduler was presented 

and contrasted with a number of current methods. It was 

discovered that these two techniques lower energy usage 

in addition to increasing Hadoop cluster efficiency. 
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