
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.23, May 2024

22

Scheduling for Energy Efficiency with Hadoop

Sebagenzi Jason
Faculty of Information, Adventist University of Central Africa (AUCA),

Senior Lecturer in Computer Science, Dean in the Faculty of Technology, Rwanda,

ABSTRACT
The main topic of this chapter is Hadoop energy efficiency

scheduling, which includes an overview of the system,

scheduling techniques, and the creation and application of a

Hadoop energy control system. Additionally, testing, analysis,

and introduction are provided for energy-efficient scheduling

for multiple users.

Keywords
Hadoop; Map Reduce; Map Reduce Slots; scheduling

algorithm; energy-efficient scheduling; dynamic management

1. INTRODUCTION
The Apache Foundation created Hadoop, a distributed

infrastructure framework that enables users to create distributed

systems without having to first grasp the underlying details.

High-speed computer clusters and storage can be completely

utilized by users. The Hadoop Distributed File System (HDFS),

which is implemented by Hadoop, is a distributed file system

with high fault tolerance capabilities and is intended to be used

with inexpensive hardware.

Because of Hadoop's fast data transfer rate, it can be used with

applications that need a lot of data to run. Data can be accessible

as streams thanks to HDFS's relaxation of the POSIX file

system's constraints. Hadoop is a well-known open-source

project with a distributed computing focus that has drawn more

and more interest. Utilized by numerous major corporations

including Amazon, Facebook, Yahoo!, and IBM, it is

extensively employed in numerous domains like log analysis,

web search, advertising computing, and data mining.

Hadoop was not designed with dynamic node management

because it is a large-scale system. In a conventional Hadoop

cluster, resource utilization and energy efficiency are low since

Hadoop chooses the number of nodes after the system is up and

running. As a result, studying Hadoop dynamic management

can help it operate more effectively and efficiently. For larger

Hadoop applications and better energy conservation, this

enhancement would be really important.

2. RESEARCH BACKGROUND
A distributed process software platform for massive data sets is

called Hadoop. It is scalable, dependable, and effective.

Hadoop contains many functioning copies of data so that it can

redistribute in the event of a node failure. This makes Hadoop

dependable because it is predicated on the loss of compute

storage and facilities.

Its parallel architecture and increased processing speed through

the use of parallel computing make it efficient. And lastly,

Hadoop is scalable, able to manage data at the petabyte (PB)

level. Furthermore, Hadoop is reasonably inexpensive because

it runs on a standard server. Of all the modules of Hadoop, the

Map Reduce and HDFS modules are the most crucial. All files

are stored on the storage node of the Hadoop cluster using

HDFS, which is the lowest level system in the system. Task

Trackers and Job Trackers make up Map Reduce, the upper

layer engine on HDFS.

MapReduce's core concepts are parallel task decomposition and

result fusion. HDFS is the core storage support system for

distributed computing. The Map Reduce programming

technique can be used to compute massive data sets in parallel,

typically bigger than 1 terabyte (TB). The program's main goal

is to simplify and map; it makes references to other functional

programming languages and borrows some traits from vector

programming languages. Map denotes mapping, while Reduce

denotes simplification.

With this architecture, program function on a distributed

system is facilitated, and the programmer needs little expertise

in distributed programming. To guarantee that all key mappings

share the same key group, the current software implementation

maps a group of key-value mappings into a new set of key-

value pairs by specifying a mapping function. Figure 9.1

depicts a streamlined procedure for executing Map Reduce

tasks.

Slave nodes (Task Trackers) and a single master node (Job

Tracker) make up the Map Reduce framework. All of a job's

tasks are scheduled by the master node, which also assigns them

to slave nodes and keeps track of how each task is carried out,

including retrying unsuccessful attempts. However, slave nodes

are only in charge of carrying out the tasks that the master node

assigns them. The input data set is typically divided into many

blocks by a Map Reduce job so that the Map task can process

them concurrently.

Prior to moving them to the Reduce job, the Framework will

sort the Map's output. The HDFS contains the input and output

data. unsuccessful attempts. However, slave nodes are only in

charge of carrying out the tasks that the master node assigns

them. The input data set is typically divided into many blocks

by a Map Reduce job so that the Map task can process them

concurrently.

Prior to moving them to the Reduce job, the Framework will

sort the Map's output. The HDFS contains the input and output

data

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.23, May 2024

23

Fig.1. Map Reduce flowchart.

Highly fault tolerant, HDFS is made to run on inexpensive

hardware. Large data volumes can be used with it, and it offers

great throughput for accessing application data. With hundreds

of server nodes on average, HDFS can automatically detect

faults and recover quickly because any one of them could fail.

HDFS is good to write and offers very high bandwidth data

since its typical file sizes vary from gigabytes (GB) to terabytes

(TB). The majority of HDFS data is read numerous times and

written once.

A file doesn't need to be modified once it's written, closed, and

created. Data consistency and high throughput data access

issues are made easier as a result. The HDFS cluster typically

consists of a Name Node and several Data Nodes, as seen in

Figure 9.2's Master/Slave design. Name Node is the core

server; it answers to client requests and maintains the file

system namespace. The management of the data kept on a

certain node is the responsibility of the Data Node. With

namespace, users can store any kind of data on the HDFS file

system.

A file is divided into one or more blocks for internal storage.

The Name Node opens, closes, and renames files and

directories that are stored in the file system namespace on a

Data Node. It also establishes how the block is mapped to a

particular Data Node. On HDFS, every data block is duplicated.

One can adjust the quantity and dimensions of the duplicated

blocks. HDFS files have a single writer and are only written

once. The Data Node block status report from heartbeat signals

is sent to the Name Node, which oversees the data copy

operation. An inventory of every data block on a Data Node can

be found in the block status report.

Fig.2. HDFS architecture.

3. RELATED RESEARCH WORK
The concept of "divide and conquer" underpins the entire

Hadoop operating system. The "divide" phase is represented by

the Map process, and the "conquer" stage by the Reduce

process. Figure 9.3 depicts the full procedure.

Fig.3. Hadoop run structure.

The following actions are part of the Map process: (1) read from

the disk, (2) execute the Map task, then (3) write the outcomes

to the disk in order of precedence.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.23, May 2024

24

The stages listed below are part of the Reduce process: First,

sort and shuffle; next, perform the Reduce operation; and last,

write the results to disk.

The output of the Map job will be sent to the output file by the

practitioner class during the third stage of the Map step. The

Mapper output key will be delayed in memory until it reaches

a predetermined quantity of data if Combiner is supplied, rather

than being written to the output right away. This portion of the

data will next be combined in the Combiner and moved to the

Practitioner.

 Although it reduces performance, data is written to disk at this

point to increase system durability. The Map key will be passed

from the Hadoop framework to the Reducer during the initial

Reduce phase. The HTTP protocol is used in this stage to

transmit data remotely. Based on the idea that Hadoop's fault

tolerance, which boosts task concurrency and speeds up

response times, the Hadoop Online Prototype allows data from

various tasks to interact through a pipeline in the third Map

phase.

Scheduling algorithms

Dynamic management of Hadoop clusters
Already, research teams have devoted a lot of time to studying

Hadoop. A Stanford team believes that there is still plenty to be

done to save energy in Hadoop. For the placement of node data,

they recommend utilizing a new approach [1]. U.C. Berkeley

developed a model based on node, working time, and power

that they claimed produced good results [2,3]. Moreover, they

think that maximizing performance and energy efficiency are

equally important [4]. To lower Hadoop's energy usage, Swiss

scientists made modifications to the block allocation algorithm

[5].

But none of these study examples could be applied in a dynamic

setting because they were all focused on the allocation of static

data blocks. Optimizing the heterogeneous Hadoop cluster was

the main focus of Oban University researchers [6]. The Hadoop

performance management and Map Reduce scheduling were

also examined by researchers at the Technical University of

Catalonia [7]. Using the adaptive Map Reduce scheduler to

satisfy user-defined high-level performance goals while

transparently and effectively utilizing hybrid systems'

capabilities was the main emphasis of their research.

They discussed the modifications made to the adaptive

scheduler to maximize the use of the underlying hybrid systems

by enabling it to co-schedule jobs that are accelerable and

nonaccelerable on the same heterogeneous Map Reduce cluster.

Though energy consumption is not taken into account in the

cluster, their research is more in line with the tight integration

of the hardware and scheduling efficiency. Furthermore,

researchers frequently employ dynamic voltage regulation to

lower energy usage in [8,9]. The drawback is that it needs

specialized hardware environments.

According to Intel study, there is a positive association between

average usage and energy consumption inside the cluster. It is

evident from the figure that energy usage rises with average

utilization. In order to lower the average utilization and hence

lower energy consumption, this architecture offers the ability to

dynamically suspend and resume the nodes. Software is used to

accomplish this; no specialized hardware is needed (Figure

9.4).

Fig.4. Power versus utilization.

This section presents Dynamic Adjusting and Negative

Feedback (DANF), a novel Hadoop dynamic load balancing

technique with the following features:

• Restarting and suspending the nodes in accordance with the

cluster load lowers average utilization, node running time, and

energy consumption.

• Increasing the stability of the cluster through feedback.

• Promote load balance, decrease load variance, and prevent

jitter by using the jitter coefficient.

• It is simple to expand and use this design.

Load modeling
We need to construct a model in order to assess a node's load.

According to research, a system's processor uses the most

amount of energy—roughly 40% of all energy used in the

system [10]. As a result, we take it into account while building

our model. Another system module that uses energy is memory.

Load information
The majority of load models in use today solely account for

CPU usage. We employ a vector in two dimensions with a

coefficient of p. Let a node j have a load

vector , We figure out its modulus,

so the load is

Let's say that there are n nodes in a cluster, and the average load

in it is

Therefore, the range is (0,1), and p can be set based on various

jobs; if the task requires a lot of CPU power, for example, p can

be greater, around 0.8. On the other hand, we typically specify

a smaller p when a task demands a high memory usage.

Period
Since this value is variable, we must choose an observation

period in order to compute it. We won't be able to get the most

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.23, May 2024

25

recent data if the timeframe is excessively long. But, an

excessively short interval will cause the result to become

contaminated by too many queries. Experiments indicate that

the duration depends on the task. An intense computational

program should therefore use a longer length of time and a data-

intensive application should use a shorter period of time in

order to waste less energy.

Negative feedback mechanism
A control system has numerous safeguards against abuse.

Negative feedback in a mathematical model denotes a negative

feedback coefficient. A fraction of the input is added as

negative feedback to counteract changes in the output:

Within the field of automatic control theory, the feedback

method of root—which is based on Newton's method—is

frequently employed in systems that automatically adjust,

including those that automatically adjust for combustion, steam

temperature, transportation, and bypass. The following is the

primary formula:

where A has a close assignment to Xn. Assuming that we

already know the beginning value of Xn in this case, we can

apply Eq. (9.4) to get the DANF load in ti-1 and ti.

4. PROPOSED APPROACH
Scheduling conditions
The load from Eq. (9.1) can use the default or user-defined

threshold and . Here, is the lower threshold

and is the upper threshold. When

, the system is in ideal status and no steps are required.

When , the system has a low load and we

should suspend nodes one by one until they system is in ideal

status. When , the system has a high load and

we must restart the suspended nodes.

Choosing a node to suspend
In a dynamic management system, one of the primary functions

of DANF is node selection. As of the now, multiple [11]:

a. Random
This algorithm is straightforward and simple to comprehend.

When the system hits the threshold, it chooses a node at

random.

b. Round-Robin
Each node is assigned by this algorithm in a circular sequence,

and it suspends in accordance with this order.

c. Minimum load
The minimum load node is chosen for suspension by this

algorithm, which orders all node loads.

Upon examining these techniques, we see that if a system

undergoes a major change and the suspend and restart

operations take place on the same node, this could result in a

considerable increase in I/O operations and negatively impact

performance. We include a jitter coefficient while choosing the

node in the DANF algorithm to lessen jitter.

Using Eq. (9.1) to calculate the load on each node, we add a

jitter coefficient k to improve system stability:

Here, is a unit time

period and k has a range greater than 0;

considering k, the node load is

Currently, the coefficient would prevent the small load node

with a substantial change from being chosen, significantly

enhancing stability. The approach works well to stop repeated

scheduling on the same system node.

Choosing a node to restart
We need to restart one or more nodes when the system reaches.

As opposed to suspension, we eliminate the node from the

queue according to rising load order by employing the principle

of "first in, first out" (FIFO).

Pseudocode
DANF algorithm is provided in Algorithm 1.

ALGORITHM 1. DANF algorithm.

Energy control

System architecture
We used Java to implement this DANF technique. Node control

modules, remote control, and resource gathering are all part of

the system.

Detailed design

Resource collection
The implementation of the resource collection module involves

the reading of the Linux file system procfs. In operating

systems similar to UNIX, a unique file system called procfs

(also known as the proc file system) displays details about

https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#eqn1
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#f0105

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.23, May 2024

26

processes and other system data. As a result, we can use it to

get memory and CPU information. a. Memory information

Total: The first line in /proc/meminfo;

Available: The second line in /proc/stat;

Mem=1 - Available/Total.

b. CPU

Total: The first line in /proc/stat;

Each CPU: The second line /proc/stat;from CPU0-CPUn;

user, nice, sys, idle: The following four column numbers;

We read these data twice, we present with “user_1 or user_2”,

user+sys is the used CPU.

CPU=(int)rintf(((float)((user_2+sys_2+nice_2)-

(user_1+sys_1+nice_1))/(float)(total_2−total_1)

)*100).Remote control

Security SHell (SSH) is used in the implementation of the

remote control module. In this case, an SSH connection can be

established in Java thanks to the third-party lib Ganymed SSH-

2 for Java.

a. Create a connection using an IP

Connection conn=new Connection(hostname);

b. Using username and password to log in

booleanisAuthenticated=conn.authenticateWithPassword(user

name,password);

c. Begin a session and run the Linux shell

Session sess=conn.openSession();

sess.execCommand(“last”);

d. Receive the response from the console

InputStreamstdout=new StreamGobbler(sess.getStdout());

BufferedReaderbr=new BufferedReader(new

InputStreamReader(stdout));

e. Get the status flag “0” success; “not 0” Failed

System.out.println(“ExitCode: ”+sess.getExitStatus());

f. Close cession and connection

sess.close();

conn.close();

Node control

A shell and the Hadoop configuration file are used to

implement node control. Nodes can be modified by the

master to initiate and stop them.

Add node:

./hadoop-daemon.sh start datanode;

./hadoop-daemon.sh start tasktracker.

Delete node;

a. Add the following in core-site.xml in master node

<property>

<name>dfs.hosts.exclude</name>

<value>/data/hadoop-0.20.2/conf/excludes</value>

</property>

dfs.hosts.exclude: node to be deleted

/data/hadoop-0.21.0/conf/excludes: The file and

directory to be deleted.

b. Using Java to write the node to be deleted in

/data/hadoop-0.20.2/conf/excludes.

c. Refresh Name Node

Hadoopdfsadmin –refreshNodes

The command can dynamic refresh dfs. hosts and dfs.

hosts. Exclude without restart NameNode.

d. Using remote SSH

Stop datanode

./hadoop-daemon.sh stop datanode

Stop Tasktracker

./hadoop-daemon.sh stop tasktracker

Energy-efficient scheduling for multiple users

Problem formulation

[12–14] introduces a Map Reduce performance

model. The model predicts how long the Map and

Reduce stages will take to complete depending on the

size of the input data set and the resources allotted.

Definition 1

Slots for Map Reduce. Every node in a Hadoop cluster

can work on P Map and P Reduce tasks at the same time,

depending on how the cluster is configured. Thus, this

Hadoop cluster has P×P Map Reduce slots.

Definition 2

Waves of execution. Task assignment occurs in many

rounds, referred to as execution waves, if the number of

Map Reduce tasks exceeds the number of Map Reduce

slots in the cluster.

Figure 9.5 shows an example executed in two waves of

20×20 Map Reduce slots.

Fig.5. Execution example of TeraSort [15] in a 20×20 Map

Reduce slot.

https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#f0030
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#bib15

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.23, May 2024

27

Consider a job represented as a set of n tasks processed

by P×P Map Reduce slots (workers) in Hadoop environments.

Each Map Reduce job consists of a specified number of Map

and Reduce tasks. The job execution time and the specifics of

the execution depend on the amount of resources (Map and

Reduce slots) allocated for the job. A simple abstraction is

adopted [12], where each Map Reduce job, Ji, is defined by the

durations of its Map and Reduce stages, mi and ri,

i.e., Ji=(mi, ri). Let us consider the execution of two

independent Map Reduce jobs, J1 and J2, in a Hadoop cluster

with a FIFO scheduler.

There are no data dependencies between these jobs.

Therefore, once the first job completes its Map stage and

begins processing its Reduce stage, the next job can start its

Map stage execution with the released Map resources in a

pipelined fashion. There may be “overlap” in the executions of

the Map stage of the next job and the Reduce stage of the

previous one. We further consider the following problem.

Let be a set of n Map Reduce jobs

with no data dependencies between them.

Here, requests Map Reduce slots and has Map

and Reduce phase durations (mi, ri), respectively.

The system scheduler can change a job’s Map Reduce slots

allocation depending on available resources. Let T be the

makespan of all n jobs. We aim to determine an order (a

schedule) of execution of jobs such that the makespan

of all jobs is minimized. Let us set the end-time of the Map

stage and start-time of the Reduce stage of job Ji as ,

respectively. Thus, the actually allocated Map Reduce slots for

job Ji are , the max available Map Reduce slots in the

Hadoop cluster is P×P. Formally, the problem of minimizing

the makespan, T, can therefore be formulated as

where the available capacity restriction is expressed as

Equation (9.9), meaning that the number of Map Reduce slots

that are actually allotted to a task (Pi) cannot exceed the total

number of Map Reduce slots in the system (P). The time no

overlapping restriction for the Map and Reduce stages for a

single work is expressed in equation (9.10), which states that

the end-time of the Map stage for a given job cannot be smaller

than the start-time of the Reduce stage.

We suggest a new method to reduce the makespan of a set of

given Map Reduce jobs based on the phrasing of the problem.

Revised Johnson’s algorithm and HScheduler
Let's first review the traditional Johnson's method [16] and see

if it can be directly applied to Map Reduce scheduling before

introducing the new one.

Johnson’s algorithm revisited

"There are n items which must go through one production stage

or machine and then a second one," according to the original

Johnson's algorithm [16]. Every stage has a single machine. A

machine can only have one object on it at once. In order to

modify the Map Reduce paradigm, we first describe the

resources as Map Reduce slots and then use Johnson's method

by treating the Map and Reduce stage resources as a single unit

(similar to a single machine).

Using a similar notation to the one found in [12], let us

consider a collection of n jobs, where each job, Ji, is

represented by the pair, mi, ri, of Map and Reduce stage

durations, respectively. Each job Ji=(mi, ri) with an

attribute Di is defined as follows:

The first argument in Di is called the stage duration and

denoted as . The second argument is called the stage type

(Map or Reduce) and denoted as . Notice that when ri=0,

Johnson’s algorithm reduces to the shortest process time first

algorithm, which is known to be optimal for minimizing total

finish (flow) time of all jobs. Algorithm 2 presents the

pseudocode of the Revised Johnson’s algorithm for Map

Reduce. First, it sorts all n jobs from the original set J in the

ordered list L in such a way that job Ji precedes job Ji+1 if and

only if . It finds the

smallest value among all durations, if the stage type

in Di is m (i.e., it represents the Map stage), then the job Ji is

placed at the head of the schedule. Otherwise, Ji is placed at the

tail. Then, the allocated job is removed and other jobs are

considered in the same fashion. The complexity of Johnson’s

algorithm is dominated by the sorting operation and thus

is O(n log n).

Theorem 1

For a two-stage production system, Johnson's algorithm

determines the theoretical bottom bound of total elapsed time

(makespan) when every work moves through the identical two

stages and uses every resource available.

https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#bib12
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#bib12
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#f0110

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.23, May 2024

28

ALGORITHM 2 Revised Johnson’s algorithm for Map

Reduce.

Johnson [16] offers a thorough proof of Theorem 1. The

optimal makespan, or theoretical lower bound, can be found

using Johnson's technique in the following ways:

1. Taking into account that the Map and Reduce stages have n

tasks. For a given Hadoop cluster of P machines (slots), let

denote the work time of the ith task for the Map phase and

denote the corresponding time for the Reduce phase.

2. Then, the optimal total elapsed time (makespan) is as

follows:

Observation 1

The assumptions of the traditional Johnson's algorithm for

a two-stage production system and Map Reduce job processing

match exactly if each job uses all Map or all Reduce slots

during processing. Next, the theoretical bottom bound of

lowering the makespan of all Map Reduce jobs can be found by

utilizing Johnson's technique.

Example 1

We replicate the five Map Reduce jobs provided in [12] in

Figures 9.6(a) and (b), correspondingly. Figure 9.6A displays

the lengths of the Map and Reduce stages for every job, while

Figure 9.6B use Johnson's technique to construct an ordered list

of the five jobs. The ideal sequence, as per Johnson's approach,

is δ=(2, 5, 1, 3, 4). Eq. (9.13) may be used to get the overall

delay time for this sequence, which equals 4 units. Using Eqs.

(9.12) and (9.13), the total elapsed time (makespan) is 47 units.

The worst-case outcome, or 78 units, can be achieved as the top

bound if the jobs are rearranged in sequence.

Fig.6. Five Map Reduce jobs examples by one cluster. (A)

Before applying the algorithm; (B) After applying the

algorithm.

Observation 2

In the case of numerous Map Reduce tasks, the actual

makespan should additionally account for extra process

timings, such as job setting up, migration, and dispatch, in

addition to the Map and Reduce stages. Based on Eqs.

(9.12) and (9.13), the actual makespan is adjusted

to , where c0 is a weight factor that depends

on the job types.

We will validate Observation 2 in the performance evaluation

section.

Observation 3

The length of the job stage is directly correlated with the

quantity of resources allotted (Map and Reduce slots). The look

of the jobs can be altered if the system scheduler allots more or

fewer Map Reduce slots than are necessary.

Example 2

Examine Scenario 2 in [12]: Using Example 1, let jobs J1,

J2, and J5 consist of 30 Map and 30 Reduce tasks, and jobs J3

and J4 consist of 20 Map and 20 Reduce tasks, with all other

configurations remaining unchanged from Example 1. We

replicate the findings in Figure 9.7, which shows how these five

Map Reduce jobs are executed based on the created Johnson's

schedule, ϴ=(J2, J5, J1, J4, J3). Even though the system has

30×30 Map Reduce slots available, [12]

We develop a new method called HScheduler to effectively

plan MapReduce processes to reduce makespan, based on

Observations 1-3 and Claim 1. The MapReduce HScheduler

algorithm's pseudocode is shown in Algorithm 3. First, by

recalculating the jobs' real durations based on available slots, it

assigns all available MapReduce slots to a specified set of jobs.

By executing execution waves in varying

amounts depending on available slots, this modifies their Map

and Reduce durations. It then scheduled all of the revised jobs

https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#eqn12
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#eqn12
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#eqn13
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#enun3

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.23, May 2024

29

using the Revised Johnson's method. All available MapReduce

slots to a specified set of jobs. By executing execution waves

in varying amounts depending on available slots, this modifies

Already, research teams have devoted a lot of time to studying

Hadoop. A Stanford team believes that there is still plenty to be

done to save energy in Hadoop. For the placement of node data,

they recommend utilizing a new approach [1]. U.C. Berkeley

developed a model based on node, working time, and power

that they claimed produced good results [2,3]. Moreover, they

think that maximizing performance and energy efficiency are

equally important [4]. To lower Hadoop's energy usage, Swiss

scientists made modifications to the block allocation algorithm

[5].

But none of these study examples could be applied in a dynamic

setting because they were all focused on the allocation of static

data blocks. Optimizing the heterogeneous Hadoop cluster was

the main focus of Oban University researchers [6]. The Hadoop

performance management and Map Reduce scheduling were

also examined by researchers at the Technical University of

Catalonia [7]. Using the adaptive Map Reduce scheduler to

satisfy user-defined high-level performance goals while

transparently and effectively utilizing hybrid systems'

capabilities was the main emphasis of their research.

They discussed the modifications made to the adaptive

scheduler to maximize the use of the underlying hybrid systems

by enabling it to co-schedule jobs that are accelerable and

nonaccelerable on the same heterogeneous Map Reduce cluster.

Though energy consumption is not taken into account in the

cluster, their research is more in line with the tight integration

of the hardware and scheduling efficiency. Furthermore,

researchers frequently employ dynamic voltage regulation to

lower energy usage in [8,9]. The drawback is that it needs

specialized hardware environments.

According to Intel study, there is a positive association

between average usage and energy consumption inside the

cluster. It is evident from the figure that energy usage rises with

average utilization. In order to lower the average utilization and

hence lower energy consumption, this architecture offers the

ability to dynamically suspend and resume the nodes. Software

is used to accomplish this; no specialized hardware is needed

(Figure 9.4).

Their Map and Reduce durations. It then scheduled all of

the revised jobs using the Revised Johnson's method.

expects that jobs J3 and J4 only need 20×20 Map Reduce slots.

amounts depending on available slots, this modifies their Map

and Reduce durations. It then scheduled all of the revised jobs

using the Revised Johnson's method. All available MapReduce

slots to a specified set of jobs. By executing execution waves

in varying amounts depending on available slots, this modifies

their Map and Reduce durations. It then scheduled all of the

revised jobs using the Revised Johnson's method.

expects that jobs J3 and J4 only need 20×20 Map Reduce slots.

Nevertheless, the outcome differs significantly from [12] if

we permit any task to utilize all of the system's Map Reduce

slots during execution. This may be done simply in Hadoop

(e.g., by dividing the big input files according to the number of

Map Reduce slots that are available). In Scenario 2 [12], jobs

J3 and J4 are now able to utilize every 30x30 Map Reduce slot

that is available for the same example. In this case, J3 and J4

will have map and reduce durations of and, respectively, and

(4, 20), and, respectivelyCompared to using only 20x20 Map

Reduce slots, both are shorter. Thus, the makespan will be, as

Figure 9.8 illustrates, where X1=1. Compared to the outcome

of the two pools technique, this result is 12% less [12]. The

fundamental tactic for our outcomes is thus the following idea.

Fig.7. Five Map Reduce jobs executions in one cluster.

Fig.8. New result of five MapReduce jobs execution.

Claim 1

If a job requests more or less Map Reduce slots than the

system can accommodate, the system scheduler may decide to

allocate a higher or smaller number of Map Reduce slots for the

work.

Assuming that there are P×P MapReduce slots in the given

Hadoop cluster, then there are two Jobs A and B and each has

requested MapReduce slots, R, and time duration, TA, TB,

respectively. Note their theoretical makespan, T1, can be easily

computed using Eqs. (9.12) and (9.13) directly. Then, the

actual makespan of job A and B using all available slots (P) is

(TA):

We develop a new method called HScheduler to effectively

plan MapReduce processes to reduce makespan, based on

Observations 1-3 and Claim 1. The MapReduce HScheduler

https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#eqn12
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#eqn13

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.23, May 2024

30

algorithm's pseudocode is shown in Algorithm 3. First, by

recalculating the jobs' real durations based on available slots, it

assigns all available MapReduce slots to a specified set of jobs.

By executing execution waves in varying amounts depending

on available slots, this modifies their Map and Reduce

durations. It then scheduled all of the revised jobs using the

Revised Johnson's method.

The complexity of HScheduler is dominated by Johnson’s

algorithm and thus is O(n log n).

ALGORITHM 3 HScheduler.

Performance evaluation

Evaluation platform

We construct a 16-node Hadoop cluster with 512 M RAM

and a dual-core Pentium CPU on each node. Installed on every

node was CentOS 6.3 and Hadoop 0.21.

5. REPORT OF THE PAPER
a. Energy control system

We use TeraSort as an example of an intensive calculation

task and Hadoop WordCount as an example of a huge memory

task. While TeraSort data are produced by TeraGen,

WordCount data are sourced from Wikipedia. The data sizes

for these two projects are 1G, 2G, 4G, and 8G in addition to

500 megabytes (M). We choose a threshold of 0.2 for the lower

threshold and 0.8 for the higher threshold, and we set the time

period to 10 s. Whereas p is set to 0.8 in TeraSort, it is set to

0.5 in WordCount. We note the mean result after five

repetitions of each test.

b. Energy-efficient scheduling

For our trials, we employ workloads that are comparable to

those in [12]:

According to research done on the Yahoo! M45 cluster, this

workload reflects a variety of MapReduce tasks [12]. The

lengths of the Map and Reduce phases are derived from actual

data from WordCount [17] and TeraSort [15], whereas the

number of Map and Reduce tasks is produced using a normal

distribution.

• Unimodal: the workload is measured using a single scale

factor for the total workload, meaning that each job's scale

factor is uniformly drawn from [1,10] and a Normal distribution

with parameters round(N(154, 558)0.1) for the number of Map

tasks and round(N(19,145)0.1) for the number of Reduce tasks.

This is tested using a set of 50 WordCount [17] (with mean Map

duration 65 s and mean Reduce duration 57 s, uniformly

distributed) and 50 TeraSort jobs [15] (with mean Map duration

73 s and Reduce duration 58 s, uniformly distributed).

• Bimodal: 20 TeraSort tasks from [15] (with mean Map length

287 s and Reduce duration 306 s, uniformly distributed) and a

subset of 20 WordCount from [17] (with mean Map duration

448 s and mean Reduce duration 413 s, uniformly distributed)

are situated, respectively. In this instance, the remaining jobs

(20%) are scaled using [8,10] and a Normal distribution with

parameter round(N(154, 558)_0.3) for the number of Map tasks

and round(N(19,145)_0.3) for the number of Reduce tasks.

Eighty percent of the jobs are scaled using a factor evenly

distributed between [1,2]. This simulates workloads with a high

percentage of short jobs and a low percentage of long jobs.

All results are obtained by the average of six runs.

6. RESULTS ANALYSIS
Energy control system

a. Load balance test

We can compare the load balance in order to assess the

selected node algorithm. The variance is computed using the

following formula in this case.

Figures 9.9 and 9.10 show the WordCount and TeraSort

results, respectively, for the Random, Round-Robin,

Minimum load, and DANF tests.

Fig.9. WordCount variance comparisons.

Fig.10.TeraSort variance comparisons.

https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#f0050
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#f0055

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.23, May 2024

31

It is evident from the result that TeraSort has a higher variance

than WordCount. Our technique is more efficient and has a

better load balance than other algorithms since the DANF has

a smaller variance for both results when compared to others

[18].

b. Energy test

Here, is the system’s idle energy consumption, is

the system’s full load energy consumption, u is the average

utilization in , and is the system’s boot time.

Further, is the node working time and is the node idle

time. For , the total node idle time is the sum

of the idle time for all nodes (Tables 9.1–9.3).

Table 9.1 WordCount total working time

 500 MB 1G 2G 4G 8G

Without

dynamic

Management

systems

111 153 250 430 836

Table.2 WordCount idle nodes

 500 MB 1G 2G 4G 8G

Idle

nodes

1 1 2 3 4

Table.3 WordCount total idle time

500

MB

1

G

2

G

4

G
8G

Without

DANF

dynamic

manage

ment

system

(s)

32 96 20

8

44

8

92

8

With

DANF

dynamic

manage

ment

system

(s)

40 12

0

25

0

57

0

11

40

Fig.11. is the comparison (Tables 9.4–9.6).

Fig.12. WordCount total idle time comparison.

Fig.13. TeraSort total idle time comparison.

We can see that DANF lengthens the idle time in both

experiments from Figures 9.11 and 9.12. Tests in TeraSort and

WordCount clearly demonstrate the benefit of DANF.

In Eq. (9.14), u is the average utilization of system boot time,

we use Ganglia to record: (Figures 9.13 and 9.14).

https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#t0010
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#t0020
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#f0060
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#t0025
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#t0035
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#eqn14
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#f0070
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp009.xhtml#f0075

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.23, May 2024

32

Fig.15. WordCount average utilization comparison.

Fig.14. TeraSort average utilization comparison.

Since Tall is the same in Eq. (9.14), Pmin and Pmax are

constants. As a result, there is a proportionality between

average use and energy consumption. Pmin = 50 W and Pmax

= 300 W were measured in our experimental setup. The data

that compare energy use are data 9.15 and 9.16.

Fig.16. WordCount system energy consumption

comparisons.

Fig.17. TeraSort system energy consumption comparisons.

As can be seen from the figure, the system's energy usage was

lower with DANF than it was with the previous setup. The

average energy decrease for all DANF test cases is 14%.

Energy-efficient scheduling

We compare the following algorithms:

• Random Order (Rand): using the work IDs as a guide, this

algorithm schedules each job in a different order.

• Johnson's Algorithm in Reversed Order (R_Johnson): this

algorithm schedules all jobs in the Revised Johnson's

algorithm's reverse order. It is demonstrated in [16] to be the

worst case scenario in terms of makespan of all tasks.

• HScheduler: this is our proposed algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.23, May 2024

33

• The traditional Johnson's algorithm, Johnson T, only takes

into account the extra process time resulting from job setup,

dispatch, migration, and other factors in a real Hadoop cluster.

As such, it only functions as a theoretical lower bound.

• An additional strategy to reduce makespan was suggested in

[12]: balanced pools (BP). To reduce the makespan, it divides

the Hadoop cluster into two balanced pools and then assigns

each job to the best pool.

For the BalancedPools algorithm, two pools with 12 and 24

MapReduce slots each are set, and 18 data nodes with two

MapReduce slots each are set for all tests.

An analysis of four algorithms' makespan comparison is

shown in Figures 9.17 and 9.18. The results of Johnson's

algorithm represent the theoretical lower bounds, whereas

R_Johnson represents the worst case scenario and serves as the

upper limitation of makespan. Compared to HScheduler, Rand

and R_Johnson have larger makespans. On average,

HScheduler has a makespan that is 8–10% shorter than BP. In

Unimodel and Bimodel, the average difference between

HScheduler and the theoretical lower bound is 15% and 13%,

respectively.

This is due to the fact that in an actual Hadoop context,

HScheduler has extra process times, such as job setup, dispatch,

and migration. We tested 50 TeraSort data (mean Map length

73 s and Reduce duration 58 s, uniformly distributed) without

taking Bimodel or Unimodel into account, as shown in Figure

9.19. Similar results from comprehensive genuine experiments

are observed; but, due to page limits, they are not included.

Fig.18. Comparison of makespan in Unimodel (in seconds).

Fig.19. Comparison of makespan in Bimodel (in seconds).

Fig.20. Comparison of makespan (in seconds) of 50

TeraSort jobs.

7. CONCLUSION
This chapter presented prior Hadoop research and

covered the fundamental ideas and design of Hadoop, the

MapReduce process, and the HDFS file system. The

fundamental strategy of DANF, which combines

Hadoop's energy efficiency and load balancing

dynamically, was put into practice and tested. In

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.23, May 2024

34

addition, an energy-efficient scheduler was presented

and contrasted with a number of current methods. It was

discovered that these two techniques lower energy usage

in addition to increasing Hadoop cluster efficiency.

8. ACKNWLEDGEMENT
This paper is focused on how to manage energy

efficiency by using Hadoop in Big data Analytics. My

gratitude to the researchers who contributed to this paper.

9. REFERENCES
[1] Leverich J, Kozyrakis C. On the energy (in)efficiency of

Hadoop clusters. SIGOPS Oper Syst Rev. 2010;44(1):61–

65.

[2] Chen Y, Ganapathi AS, Fox A, Katz RH, Patterson

DA. Statistical workloads for energy efficient MapReduce

: Technical Report Berkeley: UCB/EECS; 2010.

[3] Chen Y, Keys L, Katz. RH. Towards energy efficient

MapReduce: Technical Report Berkeley: UCB/EECS;

2009.

[4] Nedevschi S, Popa L, Iannaccone G, et al. Reducing

network energy consumption via rate-adaption and

sleeping: Technical Report Berkeley: UCB/EECS; 2007.

[5] Polo J, Carrera D, Becerra Y, Beltran V, Torres J, Ayguad

E. Performance management of accelerated MapReduce

workloads in heterogeneous clusters. ICPP2010

2010:653–62.

[6] Xie J, Yin S, Ruan X, Ding Z, Tian Y, Majors J, et al.

Improving MapReduce performance through data

placement in heterogeneous Hadoop clusters. IPDPSW

2010:1–9.

[7] Polo J, Carrera D, Becerra Y, Beltran V, Torres J,

Ayguadé E. Performance management of accelerated

MapReduce workloads in heterogeneous

clusters. Proceedings of the ICPP San Diego, CA: IEEE

Press; 2010; p. 653–62.

[8] Kim KH, Buyya R, Kim J. Power aware scheduling of

bag-of-tasks applications with deadline constraints on

DVS-enabled clusters. CCGRID. 2007;85(10):541–548.

[9] Lee YC, Zomaya AY. Minimizing energy consumption

for precedence-constrained applications using dynamic

voltage scaling. CCGRID. 2009;9:92–99.

[10] Cooper BF, Sillberstein A, Tam E, et al. Benchmarking

cloud serving systems with YCSB, SoCC’10

2010;10:143–54.

[11] Bryhni H, Klovning E, Kurc O. A comparison of load

balancing techniques for scalable web server. IEEE Newt.

2000;7/8:58–63.

[12] Verma A, Cherkasova L, Campbell RH. Orchestrating an

ensemble of MapReduce jobs for minimizing their

makespan. IEEE Trans Dependable Sec Comput. 2013;

April [online version].

[13] Verma A, Cherkasova L, Campbell RH. Two sides of a

coin: optimizing the schedule of MapReduce jobs to

minimize their makespan and improve cluster

performance. p. 11–18 MASCOTS Washington, DC:

IEEE Computer Society; 2012.

[14] Verma A, Cherkasova L, Campbell RH. ARIA: automatic

resource inference and allocation for MapReduce

environments. In: Proc. of ICAC; 2011.

[15] <http://sortbenchmark.org/YahooHadoop.pdf>.

[16] Johnson S. Optimal two-and three-stage production

schedules with setup times included. Naval Res Log

Quart. 1954;1(1):61–68.

[17] 17.WordCount,<http://www.cs.cornell.edu/home/llee/dat

a/simple/>.

[18] Beloglazov A, Abawajy J, Buyya R. Energy-aware

resource allocation heuristics for efficient management of

data centers for cloud computing. Future Generation

Comput Syst. 2012;28(5):755–7

IJCATM : www.ijcaonline.org

