CFP last date
20 January 2025
Reseach Article

The ‘face-api.js' Library for Accurate Face Recognition in Web- Applications and Possible use Cases with Accuracy Metrics

by Md Sayem Iftekar, Mohammed Aqib Zeeshan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 21
Year of Publication: 2024
Authors: Md Sayem Iftekar, Mohammed Aqib Zeeshan
10.5120/ijca2024923507

Md Sayem Iftekar, Mohammed Aqib Zeeshan . The ‘face-api.js' Library for Accurate Face Recognition in Web- Applications and Possible use Cases with Accuracy Metrics. International Journal of Computer Applications. 186, 21 ( May 2024), 10-15. DOI=10.5120/ijca2024923507

@article{ 10.5120/ijca2024923507,
author = { Md Sayem Iftekar, Mohammed Aqib Zeeshan },
title = { The ‘face-api.js' Library for Accurate Face Recognition in Web- Applications and Possible use Cases with Accuracy Metrics },
journal = { International Journal of Computer Applications },
issue_date = { May 2024 },
volume = { 186 },
number = { 21 },
month = { May },
year = { 2024 },
issn = { 0975-8887 },
pages = { 10-15 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number21/the-face-apijs-library-for-accurate-face-recognition-in-web-applications-and-possible-use-cases-with-accuracy-metrics/ },
doi = { 10.5120/ijca2024923507 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-05-31T22:31:49.868238+05:30
%A Md Sayem Iftekar
%A Mohammed Aqib Zeeshan
%T The ‘face-api.js' Library for Accurate Face Recognition in Web- Applications and Possible use Cases with Accuracy Metrics
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 21
%P 10-15
%D 2024
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This research paper explores the integration of role-based face login using the `face-api.js` framework, emphasizing its effectiveness in establishing robust face recognition-based login mechanisms and human sentiment detection. The study introduces a novel Face accuracy metrics formula to evaluate overall recognition correctness, addressing challenges in accurate facial feature extraction, real-time face detection and showed use cases where this library can be utilised in web application environment. Motivated by the need for secure authentication in web applications, the research employs pre-trained models for face detection, landmark identification, recognition, and sentiment analysis. The proposed methodology includes role-based user assignment, AI/ML algorithms, and countermeasures against spoofing attacks. The paper outlines the experimental results, demonstrating high accuracy in face and expression detection. The research contributes valuable insights into advancing secure authentication systems, paving the way for resilient and effective AI/ML-driven mechanisms in the digital landscape.

References
  1. Benyahia, A. (2020) Real-time facial detection with vanilla JavaScript and face-api.js. Available at: https://javascript.plainenglish.io/real-time-facial-detection-twith-vanilla-javascrip-and-face-api-js-3fac3f1b543e (Accessed: 9 November 2023).
  2. Saravanan, J. (2021) ‘face-api.js : A way to build a Face Recognition system in the browser’, Medium [online]. Available at: https://medium.com/theleanprogrammer/face-api-js-a-way-to-build-face-recognition-system-in-browser-c1f4ac922657 (Accessed: 9 November 2023).
  3. Espinosa Sandoval, C. G. (2019) ‘Multiple Face Detection and Recognition System Design Applying Deep Learning in Web Browsers using JavaScript’, ScholarWorks@UARK [online]. Available at: https://scholarworks.uark.edu/cgi/viewcontent.cgi?article=1073&context=csceuht (Accessed: 9 November 2023).
  4. Wen, C. (2021) Implement a Face Recognition Attendance System with face-api.js — Part II. Available at: https://medium.com/analytics-vidhya/implement-a-face-recognition-attendance-system-with-face-api-js-part-ii-4854639ee4c7 (Accessed: 09/11/2023).
  5. Severien, T. (2021) Face Detection on the Web with Face-api.js. Available at: https://www.sitepoint.com/face-api-js-face-detection/ (Accessed: 09/11/2023).
  6. Rawat, G.S. (2022) Quick guide to FaceApi Machine learning model for web - ML5.js. Available at: https://dev.to/seek4samurai/quick-guide-to-faceapi-machine-learning-model-for-web-ml5js-9mo (Accessed: 09/11/2023).
  7. Babu, S. (2020) SSD MobileNetV1 architecture. Available at: https://iq.opengenus.org/ssd-mobilenet-v1-architecture/ (Accessed: 09/11/2023).
  8. Mühler, V. (2018) JavaScript API for face detection and face recognition in the browser implemented on top of the tensorflow.js core API. Available at: https://www.npmjs.com/package/face-api.js/v/0.11.0?activeTab=readme (Accessed: 09/11/2023).
  9. Mandic, V. (2020) FaceAPI Tutorial. Available at: https://vladmandic.github.io/face-api/tutorial/ (Accessed: 9 November 2023).
  10. Benyahia, A. (2011) Boost Your Website’s Capabilities with Real-Time Facial Recognition Using Face-API.js and Vanilla JavaScript. Available at: https://javascript.plainenglish.io/boost-your-websites-capabilities-with-real-time-facial-recognition-using-face-api-js-46261ec464e2 (Accessed: 09/11/2023).
  11. Mühler, V. (2020) face-api.js - JavaScript API for face detection and face recognition in the browser and nodejs with tensorflow.js. Available at: https://github.com/justadudewhohacks/face-api.js(Accessed: 09/11/2023).
  12. Mühler, V. (2020). face-api.js — JavaScript API for Face Recognition in the Browser with tensorflow.js. [Online]. Available at: 1. (Accessed: 9 November 2023)
  13. Ayala, R. (2020) Facial Recognition with JavaScript. Available at: https://reynaldo-ayala.medium.com/facial-recognition-with-javascript-4bf928320957 (Accessed: 09/11/2023).
Index Terms

Computer Science
Information Sciences

Keywords

face-api.js Face Recognition