
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.21, May 2024

10

The ‘face-api.js' Library for Accurate Face Recognition in
Web- Applications and Possible use Cases with

Accuracy Metrics

Md Sayem Iftekar
Department of Computing and Games

Teesside University, Middlesbrough TS1 3BA

Mohammed Aqib Zeeshan
Department of Computing and Games

Teesside University, Middlesbrough TS1 3BA

ABSTRACT
This research paper explores the integration of role-based face

login using the `face-api.js` framework, emphasizing its

effectiveness in establishing robust face recognition-based login

mechanisms and human sentiment detection. The study

introduces a novel Face accuracy metrics formula to evaluate

overall recognition correctness, addressing challenges in accurate

facial feature extraction, real-time face detection and showed use

cases where this library can be utilised in web application

environment. Motivated by the need for secure authentication in

web applications, the research employs pre-trained models for

face detection, landmark identification, recognition, and

sentiment analysis. The proposed methodology includes role-

based user assignment, AI/ML algorithms, and countermeasures

against spoofing attacks. The paper outlines the experimental

results, demonstrating high accuracy in face and expression

detection. The research contributes valuable insights into

advancing secure authentication systems, paving the way for

resilient and effective AI/ML-driven mechanisms in the digital

landscape.

Keywords

face-api.js, Face Recognition

1. INTRODUCTION
In this research paper, the integration of role or access level-based

face login through the utilization of `face-api.js` is

comprehensively explored, showcasing its efficacy in achieving

robust face recognition-based login mechanisms, human

sentiment detection and other use cases. The study employs a

novel approach by incorporating Face accuracy metrics formula

to evaluate the overall correctness of face recognition, measuring

the ratio of accurately identified faces. The paper highlights the

versatility of the proposed system by demonstrating its

proficiency in recognizing faces from still images, videos, and

live webcam streams. Emphasizing the significance of artificial

intelligence (AI) and machine learning (ML) in addressing

challenges related to accurate facial feature extraction, real-time

face detection, and safeguarding against unauthorized access

through spoofing attacks, the research contributes valuable

insights into the realm of secure authentication systems.

Additionally, the paper delves into the constraints associated with

the proposed methodology and provides strategic solutions to

overcome these challenges, thereby enhancing the robustness of

face recognition-based login mechanisms.

2. MOTIVATION
The motivation behind this research stems from the imperative

need for secure and reliable authentication mechanisms in

contemporary web application environments. With an increasing

reliance on face recognition technology for user authentication,

the study is driven by the ambition to advance the state-of-the-art

in this domain. By employing the versatile `face-api.js`

framework, the research seeks to not only demonstrate the

seamless integration of face login but also to enhance the overall

correctness of face recognition through the innovative

application of Face accuracy metrics formula. The overarching

goal is to contribute to the development of robust face

recognition-based login systems that transcend traditional

boundaries, effectively recognizing faces in diverse scenarios

such as still images, videos, and live webcam streams. Moreover,

the research is motivated by the imperative to address challenges

associated with accurate facial feature extraction, real-time face

detection, and the prevention of unauthorized access via spoofing

attacks. By tackling these issues head-on and proposing viable

solutions, the study aims to pave the way for more secure and

dependable AI/ML-driven authentication mechanisms in the

digital landscape.

3. METHODOLOGY
The methodology employed in this research endeavours to

achieve a comprehensive understanding of the integration of face

login using the `face-api.js` framework, coupled with the

implementation of the Face accuracy metrics formula to assess

the accuracy of face recognition. The study encompasses a

multifaceted approach, starting with the utilization of the `face-

api.js` library to enable face login functionality. The application

of the Face accuracy metrics formula involves systematically

evaluating the ratio of correctly recognized faces across various

scenarios, including still images, videos, and live webcam

streams. Furthermore, the research explores the incorporation of

human sentiment recognition alongside face recognition,

demonstrating the system's ability to discern both facial features

and emotional nuances. The introduction of role-based user

assignment utilizing the `face-api.js` library adds a layer of

sophistication to the authentication process. The AI/ML

algorithms implemented address challenges in accurate facial

feature extraction and real-time face detection. To counteract

unauthorized access through spoofing attacks, the methodology

includes robust measures embedded within the AI/ML

framework. Throughout the study, constraints associated with the

proposed methodology are identified and critically analysed. The

paper systematically outlines strategies and solutions for

overcoming these constraints, ensuring the development of a

resilient and effective face recognition-based login mechanism.

4. METHODOLOGIES:

4.1 Face-api.js library
Face-api.js is a robust JavaScript framework built on

TensorFlow.js, offering pre-trained models for face detection and

recognition applications, including identifying facial

expressions, recognizing faces, detecting facial landmarks, and

extrapolating age and gender. Its intuitive API and GPU

acceleration make it accessible to developers without extensive

machine learning knowledge. However, ethical considerations,

such as obtaining user consent and securing facial data, are

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.21, May 2024

11

crucial when using face-api.js. [1]

4.2 Models Used
The prominent JavaScript machine learning library

TensorFlow.js is the source of the models utilised in face-api.js.

Because they are pre-trained models, face-api.js does not contain

them until after they have been trained on sizable datasets. [2]

In the proposed AI-powered web application, the models

provided by face-api.js can be utilized to implement a robust face

detection and human sentiment analysis feature. Here's how these

models have applied:

4.2.1 Face Detection
The initial step in face recognition is face detection, for which

models like `SSD Mobilenet v1` or `Tiny Face Detector` from

face-api.js can be used. These models identify the boundaries of

one or more faces in an image, a crucial step for further

processing. The `Tiny Face Detector`, a lightweight model ideal

for limited computational resources, was used for this project's

implementation.

4.2.2 Face Landmark Detection
Once a face is detected, the next step is to identify the position

and shape of facial features such as the eyebrows, eyes, nose,

mouth and lips, and chin. This can be achieved using the `Face

Landmark Detection` model. Recognizing these landmarks is

essential for understanding facial expressions.

4.2.3 Face Recognition
The `faceRecognitionNet` model can be used to recognize faces.

This could be useful in a web application for features like

automatic user authentication or personalized user interactions.

4.2.4 Human Sentiment Analysis
The `Face Expression Recognition` model can detect the

expression on a face, such as happiness, neutrality, or anger. This

could be used in a web application to gauge employee sentiment

during video conferences or virtual meetings.

By integrating these models into a web application, it can be

created a more interactive and personalized user experience. For

instance, automatic user authentication using face recognition

can streamline the login process. Similarly, real-time sentiment

analysis during virtual meetings can provide valuable feedback

to managers and HR professionals.

4.3 Model application
To apply the models provided by face-api.js to resolve the

suggested problems, it would need to follow these steps:

4.3.1 Models
The JavaScript code provided uses the face-api.js library to load

four models: `SsdMobilenetv1Model` for face detection,

`FaceLandmarkModel` for detecting facial landmarks such as

eyes and nose, `FaceRecognitionModel` for recognizing faces by

their descriptors, and `FaceExpressionModel` for analysing

facial expressions. These models are loaded using the

`loadFromUri` function and are essential for various face

recognition tasks.

4.3.2 Detect Faces
These models are then used to detect faces in an image or video

stream, identify landmarks, and analyse expressions.

4.3.3 Analyse Results
The results from the ‘detectAllFaces’ function can be used to

implement features like evaluating employee sentiment during

video conferences.

4.3.4 Matching labels
The code retrieves data from a PHP script (‘getAllDesc.php’) via

a GET request using jQuery’s AJAX functionality, which is

expected to be an array of labels representing recognized faces.

4.3.5 Webcam Access
The user’s webcam is accessed to capture video and set it as the

source for a video element via

navigator.mediaDevices.getUserMedia.

4.3.6 Face Detection and Recognition
Faces are detected in the webcam stream, and various models are

applied for face detection, facial landmarks, face descriptors, and

facial expressions.

4.3.7 Label Matching and Redirection
Each detected face is matched with known faces, and if a match

is found, a session variable is set on the server, and the user is

redirected to a specific page.

4.3.8. Accuracy calculation
The system’s accuracy is assessed by contrasting its output with

known accurate outcomes.

The code for face login and sentiment analysis combines face

detection and recognition using pre-trained models with a

backend PHP script to fetch known face labels. If a match is

found, it initiates a session and redirects to a specific page,

otherwise, it logs an error message. The code primarily focuses

on client-side JavaScript, assuming the PHP scripts for fetching

labels and setting sessions are correctly implemented server-side.

[3]

4.4 Data format
The pre-trained models used in face-api.js, derived from

TensorFlow.js, are stored in JSON format and binary weight files.

Each model includes a manifest.json file with metadata like

model topology and references to binary weight files, which

contain the learned weights. These files are stored in the same

directory, and face-api.js loads the model by reading the

manifest.json file and corresponding weight files. Thus, the data

for face-api.js models is stored as JSON files for metadata and

binary weight files for learned weights. [4]

4.5 Face recognition data conversion
Face-api.js models, pre-trained and stored in a format directly

compatible with the library, require no data conversion. These

models, comprising a manifest.json file with metadata and binary

weight files with learned weights, are loaded directly. However,

for models trained outside of face-api.js or TensorFlow.js, such

as those trained with Keras, conversion to the TensorFlow.js

format using the tensorflowjs_converter tool probably be

necessary.

In summary, data conversion for face-api.js models are typically

not needed unless it is needed importing a model from a different

format. [5]

4.6 Data cleaning
Face-api.js models, pre-trained to handle various face images and

variations in lighting, pose, and expressions, typically don't

require data cleaning. However, input images should be high-

quality, in colour, and with clear, unobscured faces. Some

preprocessing, like image resizing or pixel value normalization,

might be necessary, but these are standard operations in computer

vision, not specific data cleaning operations.

So, while data cleaning in the traditional sense (like handling

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.21, May 2024

12

missing values or removing outliers) is not required for face-

api.js models, ensuring good quality input images is crucial for

optimal performance. [6]

4.7 Model Training Data Size and Justification

4.7.1 Face-recognition & sentiment analysis Data

size
Mainly these four models such as SsdMobilenetv1 Model, Face

Landmark Model, Face Recognition Model and Face Expression

Model have used to solve the problem. The data size for training

models in face-api.js is determined based on the specific

requirements of the model. The details are given below:

The face-api.js library includes several models optimized for

mobile and web use. The SsdMobilenetv1 model, used for face

detection, is 5.4 MB in size. [7]

The face detector model, trained on a custom dataset of about

10,000 images, is 1.7MB. [8]

The tiny face detector, trained on a dataset of about 14,000

photos, is only 190 KB. [9]

The FaceLandmark detection models were trained on a

collection of about 35,000 face photos. [10]

The FaceRecognitionModel/faceRecognitionNet is 6.2 MB

and has a 99.38% prediction accuracy on the LFW benchmark.

[11]

Lastly, the FaceExpression model is around 310 KB and uses

densely connected blocks and depth-wise separable

convolutions. [12]

4.7.2 Justification of each model size used in face-

api-js
A few models have to use various features and functionalities in

order to achieve the research goal. The thorough explanation of

each model size utilised in the study with face-api.js is provided

below:

4.7.2.1 FaceLandmarkModel (350 KB for default

model, 80 KB for tiny model)

The FaceLandmarkModel, trained on a dataset of around 35,000

face photos, identifies 68 facial landmarks. The basic model is

just 350 KB, while the tiny model is 80 KB. Both models use

densely connected blocks and depthwise separable convolutions,

and their small sizes are due to their specific task of recognizing

facial landmarks, a less complex task than face recognition or

object detection.

4.7.2.2 FaceRecognitionModel/ faceRecognitionNet

(6.2 MB):
Using the LFW benchmark, this face recognition model obtains

an impressive prediction accuracy of 99.38%. The great precision

and difficulty of the task the model performs—which entails

differentiating between maybe hundreds of millions of distinct

faces—justify the model's size.

4.7.2.3 SsdMobilenetv1 (5.4 MB):
This model, designed for face detection, is optimized for mobile

and web use. It integrates the best features of MobileNet and SSD

(Single Shot Multibox Detector) technologies, enabling real-time

object detection on devices with limited computational resources.

4.7.2.4 FaceExpression (310 KB)
This model is accurate, fast, and lightweight, utilizing densely

connected blocks and depth-wise separable convolutions. Its

small size is justified by its specific task of recognizing facial

expressions, a less complex task compared to face recognition or

object detection.

In general, the size of a model is determined by a trade-off

between accuracy and computational efficiency. Larger models

tend to have higher accuracy but require more computational

resources, while smaller models are more efficient but may have

lower accuracy. The sizes of these models are designed to balance

these factors for their specific tasks.

4.8 Parameter settings
Parameter Settings for Face Recognition and Sentiment Analysis:

This section contains comprehensive parameter settings for

sentiment analysis and face recognition. Setting up parameters

for model training in face-api.js involves several steps:

4.8.1 Load the Models
The first step is to load the models that are required to use. In

face-api.js, this is done using the loadFromUri function. For

example, the project implementation is using the

tinyFaceDetector, faceLandmark68Net, faceRecognitionNet, and

faceExpressionNet models, these models would be load like this:

Promise.all([

faceapi.nets.tinyFaceDetector.loadFromUri('/models'),

faceapi.nets.faceLandmark68Net.loadFromUri('/models'),

faceapi.nets.faceRecognitionNet.loadFromUri('/models'),

faceapi.nets.faceExpressionNet.loadFromUri('/models'),

]).then(startVideo);

4.8.2 Set Up Video Stream
As the application is using a video stream for real-time face

detection, so it was needed to set up the video stream and start it

once the models are loaded.

4.8.3 Set Detection Options

When calling the detectAllFaces function, it can pass

in an instance of TinyFaceDetectorOptions or

SsdMobilenetv1Options to set options like the input

size and score threshold.

4.8.4 Choose What to Detect

After detecting faces, it can choose what additional

information to detect by chaining functions like

withFaceLandmarks and withFaceExpressions.

These steps have been used for the specific requirements of the

project and the machine learning algorithm. [13]

4.9 Justification for the parameter’s settings
The parameters for face-api.js model training is set up to ensure

optimal performance and accuracy of the models. Here's why:

4.9.1 Model Loading
Models are loaded using the `loadFromUri` function to ensure

that they are available for use when needed. This is crucial

because the models contain pre-trained weights that allow the

library to perform complex tasks like face detection, landmark

detection, and face recognition.

4.9.2. Video Stream Setup
If a video stream is used for real-time face-detection, it needs to

be set up and started once the models are loaded. This allows the

library to analyse frames from the video in real-time.

4.9.3 Detection Options
When calling the `detectAllFaces` function, an instance of

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.21, May 2024

13

`TinyFaceDetectorOptions` or `SsdMobilenetv1Options` is

passed in to set options like the input size and score threshold.

These options can affect the speed and accuracy of face detection.

4.9.4 Choosing What to Detect
After detecting faces, additional information can be detected by

chaining functions like `withFaceLandmarks` and

`withFaceExpressions`. This allows the library to provide more

detailed information about detected faces.

These parameters are set up based on the requirements of the

specific tasks that face-api.js is used for. They help ensure that

the library provides accurate and efficient results.

4.10 Implementation’s Architecture
This section of the paper describes the system architecture,

system components and overall system’s flow of the

implementation designed for research purpose.

4.10.1 Face recognition Architecture
The provided diagram below outlines a high-level system

architecture for a face recognition and human sentiment detection

module. This architecture, implemented in code, offers insights

into its various components and their interactions.

Fig 1: Architecture of Face recognition

4.10.2 System Components
There are five key components such as Web Browser (Client),

Apache Server, SQLite Database, PHP at back-end and Face

Recognition Library (face-api.js). The client's web browser

executes the HTML, JavaScript, and jQuery code, displaying the

webcam video feed, processing face detection and recognition,

and handling user interactions. The server hosts the PHP scripts

'getAllDesc.php' and 'setSession.php' for fetching known face

labels and setting session data, respectively, and interacts with the

SQLite database to retrieve sales data. The SQLite database

stores user labels for face recognition and login credentials. The

face-api.js, a JavaScript library, performs face detection,

landmarks detection, descriptor extraction, and expression

analysis using pre-trained models.

4.10.3 System Flow
The client's web browser loads the HTML and JavaScript code,

requests face labels from the 'getAllDesc.php' script using AJAX

and performs real-time face detection and recognition on the

webcam video stream using 'face-api.js'. Detected faces are

compared to known faces, and if a match is found, the client

sends data to the 'setSession.php' script to set a session and

redirects the user to a specific page. If no match is found, a

message is logged. The server handles the client's requests,

interacts with the database, and manages sessions. This is a

simplified representation of the system architecture given below.

Fig 2: Face login flow overview

5. EXPERIMENTAL RESULTS
In the segment of the paper, there will be testing of the face-api.js

library and accuracy of the face recognition with web application.

5.1 Testing Face recognition accuracy
Testing the accuracy of the face-api.js based face recognition

system involves preparing test images, running the web

application, testing with known faces, monitoring output,

checking for accurate matches, recording results, evaluating

accuracy metrics, repeating for various test cases, fine-tuning,

and optimizing for deployment. The system's performance is

assessed based on true positives, false positives, and false

negatives, with adjustments made as necessary for optimal

accuracy.

5.1.1 Evaluate Accuracy Metrics
Calculate accuracy metrics to assess the performance of face

recognition:

- True Positive (TP): Correctly recognized faces.

- False Positive (FP): Incorrectly recognized faces.

- False Negative (FN): Missed faces.

- Accuracy: (TP / (TP + FP + FN)).

Web

Browser

(Client-

Side)

Server
SQLite

Databas

e

PHP Script

(getAllDesc)

PHP Script

(setSession)

face-api.js

(JavaScript)

Known

Face

Labels

(JSON

SQLite

Databas

e

System
System

Dashboard

Alternative

(If Login

credentials

are correct)

(else)

Insert ID &

Password

Show error

Message.

Give access by both role

and branch.

Alternative

(If face landmark

matches)

(else)

Detect face via

webcam.

Maintain detection process & Show

error Message.

Give access by both role

and branch.

Each

System

Entities

Admin users have

full access.

Regular access limited access

show alert

Logout

Unset

Session

Redirect to

Login

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.21, May 2024

14

5.2 Experiment with still image accuracy:

Fig 3: sample 1, shows the 100% accuracy of the model on

face-detection and over 99% accuracy on human expression

detection.

Fig 4: Sample 2, ‘Accuracy checking procedure’ has detailed

on the appendices

5.3 Face recognition accuracy measuring method
Evaluating the accuracy of a face recognition system involves

measuring True Positives (correctly recognized faces), False

Positives (incorrectly recognized faces), and False Negatives

(missed faces). Accuracy is calculated as the proportion of True

Positives to all test cases (True Positives + False Positives + False

Negatives). This provides a measure of the system's overall

performance in recognizing faces correctly.

Example:

- True Positives (TP): 8

- False Positives (FP): 2

- False Negatives (FN): 1

- Accuracy = TP / (TP + FP + FN) = 8 / (8 + 2 + 1) = 0.8 or 80%

Accuracy provides a simple measure of the system's performance

in recognizing faces correctly. The higher the accuracy, the better

the system's performance.

Fig 5: Detect multiple face from video stream.

Fig 6: Detect multiple face from video stream with no

matched face sample.

The web application uses face samples to verify users through a

video stream. If any face in the stream matches a stored sample,

the system verifies the user and grants dashboard access with

role-based capabilities.

Fig 7: Detecting multiple faces from Video Stream

Multiple faces can be detected with expression detection with

near 100% accuracy. When a face is not matched with the label

then an error message can be displayed with ‘No matching faces

detected.’ Which is displayed in the console for the above

scenario.

Fig 7: Detection from webcam.

When a face will be detected and matched with the label only

then the user will be logged into the system with required user

role assigned.

5.4 Face capture:

Fig 8: Face captures only when a face detected.

The face capture button will be activated to store the face label

only when a face is detected on the canvas.

Fig 9: Face capture button inactive when a face is not

detected.

When there are no faces available in the canvas then the save

button will be inactive.

5.5. Face capture with expression:

Fig 10: Face capture button get activated only when a face

detected with expression.

5.6. Evaluations upon the experimental results
The application's face and expression detection feature were

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.21, May 2024

15

tested by five anonymous participants, achieving a 100%

accuracy rate in face detection. This suggests its potential as an

addition to the login process. While the model has no notable

limitations, its implementation is currently restricted to facial

expression and face login. Enhancements could include face

recognition-based attendance and dual factor authentication

using facial recognition alongside the conventional username and

password system for improved security.

An identified challenge arises from instances where, despite the

removal of a face sample from the admin panel, users are still

logged into the system. This anomaly is attributed to the

persistence of face samples in the browser cache, allowing the

system to retrieve outdated facial data. A pragmatic solution to

this issue involves clearing the image cache, subsequently

rectifying the discrepancy, and ensuring accurate user

authentication. The experimental evaluations shed light on the

importance of addressing such cache-related intricacies to

enhance the overall reliability and precision of the face

recognition system.

6. CONCLUSION
In conclusion, the integration of face-api.js presents a versatile

framework capable of addressing various use cases in the realm

of facial recognition technology. The system demonstrated

commendable performance in applications such as face

recognition-based login, role-based user assignment, human

sentiment detection, and dynamic control activation based on

face detection. Despite the challenges associated with browser

cache persistence, the overall adaptability and effectiveness of

face-api.js underscore its potential for enhancing security

measures and user experience in web applications reliant on

facial recognition technology. The presented research contributes

valuable insights into the practical implementation of AI/ML-

driven authentication mechanisms, paving the way for further

advancements in the field.

7. REFERENCES
[1] Benyahia, A. (2020) Real-time facial detection with vanilla

JavaScript and face-api.js. Available at:

https://javascript.plainenglish.io/real-time-facial-detection-

twith-vanilla-javascrip-and-face-api-js-3fac3f1b543e

(Accessed: 9 November 2023).

[2] Saravanan, J. (2021) ‘face-api.js : A way to build a Face

Recognition system in the browser’, Medium [online].

Available at: https://medium.com/theleanprogrammer/face-

api-js-a-way-to-build-face-recognition-system-in-browser-

c1f4ac922657 (Accessed: 9 November 2023).

[3] Espinosa Sandoval, C. G. (2019) ‘Multiple Face Detection

and Recognition System Design Applying Deep Learning in

Web Browsers using JavaScript’, ScholarWorks@UARK

[online]. Available at:

https://scholarworks.uark.edu/cgi/viewcontent.cgi?article=

1073&context=csceuht (Accessed: 9 November 2023).

[4] Wen, C. (2021) Implement a Face Recognition Attendance

System with face-api.js — Part II. Available at:

https://medium.com/analytics-vidhya/implement-a-face-

recognition-attendance-system-with-face-api-js-part-ii-

4854639ee4c7 (Accessed: 09/11/2023).

[5] Severien, T. (2021) Face Detection on the Web with Face-

api.js. Available at: https://www.sitepoint.com/face-api-js-

face-detection/ (Accessed: 09/11/2023).

[6] Rawat, G.S. (2022) Quick guide to FaceApi Machine

learning model for web - ML5.js. Available at:

https://dev.to/seek4samurai/quick-guide-to-faceapi-

machine-learning-model-for-web-ml5js-9mo (Accessed:

09/11/2023).

[7] Babu, S. (2020) SSD MobileNetV1 architecture. Available

at: https://iq.opengenus.org/ssd-mobilenet-v1-architecture/

(Accessed: 09/11/2023).

[8] Mühler, V. (2018) JavaScript API for face detection and face

recognition in the browser implemented on top of the

tensorflow.js core API. Available at:

https://www.npmjs.com/package/face-

api.js/v/0.11.0?activeTab=readme (Accessed: 09/11/2023).

[9] Mandic, V. (2020) FaceAPI Tutorial. Available at:

https://vladmandic.github.io/face-api/tutorial/ (Accessed: 9

November 2023).

[10] Benyahia, A. (2011) Boost Your Website’s Capabilities with

Real-Time Facial Recognition Using Face-API.js and

Vanilla JavaScript. Available at:

https://javascript.plainenglish.io/boost-your-websites-

capabilities-with-real-time-facial-recognition-using-face-

api-js-46261ec464e2 (Accessed: 09/11/2023).

[11] Mühler, V. (2020) face-api.js - JavaScript API for face

detection and face recognition in the browser and nodejs

with tensorflow.js. Available at:

https://github.com/justadudewhohacks/face-

api.js(Accessed: 09/11/2023).

[12] Mühler, V. (2020). face-api.js — JavaScript API for Face

Recognition in the Browser with tensorflow.js. [Online].

Available at: 1. (Accessed: 9 November 2023)

[13] Ayala, R. (2020) Facial Recognition with JavaScript.

Available at: https://reynaldo-ayala.medium.com/facial-

recognition-with-javascript-4bf928320957 (Accessed:

09/11/2023).

8. APPENDICES
There were five participants and individuals had their data

removed. The tests were carried out on these areas, accuracy,

login, and expression.

Participants Accuracy Login Expression

Participant 1 100% Succeed Detected

Participant 2 100% Succeed Detected

Participant 3 100% Succeed Detected

Participant 4 100% Succeed Detected

Participant 5 100% Succeed Detected

IJCATM : www.ijcaonline.org

