CFP last date
20 January 2025
Reseach Article

Mean Harmonic Energy of a Graph

by Ghada Abdoh Naser Al-Roainee, Sultan Senan Mahde
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 20
Year of Publication: 2024
Authors: Ghada Abdoh Naser Al-Roainee, Sultan Senan Mahde
10.5120/ijca2024923623

Ghada Abdoh Naser Al-Roainee, Sultan Senan Mahde . Mean Harmonic Energy of a Graph. International Journal of Computer Applications. 186, 20 ( May 2024), 1-5. DOI=10.5120/ijca2024923623

@article{ 10.5120/ijca2024923623,
author = { Ghada Abdoh Naser Al-Roainee, Sultan Senan Mahde },
title = { Mean Harmonic Energy of a Graph },
journal = { International Journal of Computer Applications },
issue_date = { May 2024 },
volume = { 186 },
number = { 20 },
month = { May },
year = { 2024 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number20/mean-harmonic-energy-of-a-graph/ },
doi = { 10.5120/ijca2024923623 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-05-24T23:33:16.118366+05:30
%A Ghada Abdoh Naser Al-Roainee
%A Sultan Senan Mahde
%T Mean Harmonic Energy of a Graph
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 20
%P 1-5
%D 2024
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, the concept of mean harmonic energy of a graph denoted by Emh(G) is introduced, the mean harmonic energy of some classes of graphs is computed. Also some basic properties of mean harmonic energy and some bounds for mean harmonic energy of a graph have been obtained.

References
  1. C. Adiga, M. Smitha, On maximum degree energy of a graph, Int. J. Contemp. Math. Sci., 4 (2009), 385-396.
  2. R. Balakrishnan, The energy of a graph, Linear Algebra Appl., 387 (2004), 287-295.
  3. D. Cvetkovic, M. Doob, H. Sachs, Spectra of graphs theory and application, Barth/Heidelberg, Germany, 1995.
  4. S. N. Daoud, Complexity of cocktail party graph and crown graph, American Journal of Applied Sciences, 9 (2) (2012), 202-207.
  5. J. A. Gallian, A dynamic survey of graph labeling, Electron J. Combin., 15 (2008).
  6. I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz, 103 (1978), 1-22.
  7. I. Gutman, B. Furtula, The total π-electron energy saga, Croat. Chem. Acta, 90 (2017), 359-368.
  8. I. Gutman, B. Furtula, Survey of graph energies, Math. Interdisc. Res., 2 (2017), 85-129.
  9. N. Jafari Rad, A. Jahanbani, I. Gutman, Zagreb energy and Zagreb Estrada index of graphs, MATCH Commun. Math. Comput. Chem., 79 (2018), 371-386.
  10. A. Jahanbani and H. H. Raz, On the Harmonic energy and the harmonic Estrada index of graphs, MATI., 1 (1) (2019), 1-20.
  11. X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, New York Heidelberg Dordrecht, London, 2012.
  12. S. S. Mahde, V. Mathad, The minimum hub distance energy of a graph, Internat. J. Comput. Appl., 125(2015).
  13. V. Mathad, S. S. Mahde, The minimum hub energy of a graph, Palest. J. Math., 6 (2017), 247-256.
  14. N. Ozeki, On the estimation of inequalities by maximum and minimum values, J. College Arts ans Science, Chiba Univ., 5(1968), 199-203.
  15. M. J. Sridevi, K. R. Rajanna, Harmonic energy of a graph, Journal of Statistics and Mathematical Engineering, 5(1) (2019), 20-26.
Index Terms

Computer Science
Information Sciences
AMS
Subject Classification 05C50
05C99

Keywords

Eigenvalue of a graph Energy Mean Harmonic Energy