CFP last date
20 February 2025
Reseach Article

Development of a Mathematical Model for Crime Detection based on YOLO Network Architecture

by Oghenevovwero Zion Apene, Nachamada Vachaku Blamah, Gilbert Imuetinyan Osaze Aimufua, Morufu Olalere
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 20
Year of Publication: 2024
Authors: Oghenevovwero Zion Apene, Nachamada Vachaku Blamah, Gilbert Imuetinyan Osaze Aimufua, Morufu Olalere
10.5120/ijca2024923621

Oghenevovwero Zion Apene, Nachamada Vachaku Blamah, Gilbert Imuetinyan Osaze Aimufua, Morufu Olalere . Development of a Mathematical Model for Crime Detection based on YOLO Network Architecture. International Journal of Computer Applications. 186, 20 ( May 2024), 17-24. DOI=10.5120/ijca2024923621

@article{ 10.5120/ijca2024923621,
author = { Oghenevovwero Zion Apene, Nachamada Vachaku Blamah, Gilbert Imuetinyan Osaze Aimufua, Morufu Olalere },
title = { Development of a Mathematical Model for Crime Detection based on YOLO Network Architecture },
journal = { International Journal of Computer Applications },
issue_date = { May 2024 },
volume = { 186 },
number = { 20 },
month = { May },
year = { 2024 },
issn = { 0975-8887 },
pages = { 17-24 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number20/development-of-a-mathematical-model-for-crime-detection-based-on-yolo-network-architecture/ },
doi = { 10.5120/ijca2024923621 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-05-24T23:33:16+05:30
%A Oghenevovwero Zion Apene
%A Nachamada Vachaku Blamah
%A Gilbert Imuetinyan Osaze Aimufua
%A Morufu Olalere
%T Development of a Mathematical Model for Crime Detection based on YOLO Network Architecture
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 20
%P 17-24
%D 2024
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Advancements in computer vision and deep learning have led to significant progress in automated crime detection systems. This study focuses on the development of a novel mathematical model for crime detection based on the You Only Look Once (YOLOv5) network architecture. The proposed model utilizes state-of-the-art object detection techniques to identify, classify, and detect criminal activities in surveillance footage, including images and videos, focusing on critical crime categories such as weapons and violent behaviour. The model's performance is evaluated on seven classes of weapon objects and violent scenes, achieving a precision (P) of 0.842, recall (R) of 0.77, and mAP of 0.811. These results demonstrate the model's efficiency in accurately identifying and categorizing criminal activities, thereby contributing to enhancing public safety and security through the utilization of cutting-edge deep learning technologies in crime prevention and detection.

References
  1. O. Z. Apene, N. V. Blamah, and G. I. O. Aimufua, “Advancements in Crime Prevention and Detection : From Traditional Approaches to Artificial Intelligence Solutions,” Eur. J. Appl. Sci. Eng. Technol., vol. 2, no. 2, pp. 285–297, 2024, doi: 10.59324/ejaset.2024.2(2).20.
  2. A. Tundis, H. Kaleem, and M. Mühlhäuser, “Detecting and tracking criminals in the real world through an IoT-based system,” Sensors (Switzerland), vol. 20, no. 13, pp. 1–27, 2020, doi: 10.3390/s20133795.
  3. G. Bathla et al., “Autonomous Vehicles and Intelligent Automation: Applications, Challenges, and Opportunities,” Mob. Inf. Syst., vol. 2022, 2022, doi: 10.1155/2022/7632892.
  4. N. Shah, N. Bhagat, and M. Shah, “Crime forecasting: a machine learning and computer vision approach to crime prediction and prevention,” Vis. Comput. Ind. Biomed. Art, vol. 4, no. 1, 2021, doi: 10.1186/s42492-021-00075-z.
  5. A. J. Naik and M. T. Gopalakrishna, “Violence Detection in Surveillance Video-A survey Violence Detection in SurveillanceVideo-A survey,” no. July 2016, 2017.
  6. Y. Myagmar-ochir and W. Kim, “A Survey of Video Surveillance Systems in Smart City,” 2023.
  7. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 779–788, 2016, doi: 10.1109/CVPR.2016.91.
  8. R. Szeliski, Computer vision: algorithms and applications, vol. 48, no. 09. 2011. doi: 10.5860/choice.48-5140.
  9. R. A. Jaafar, W. A. Jbara, and S. A. Abdulrahman, “A Review on Concept of Object Detection Techniques,” no. November, 2019, doi: 10.14445/22312803/IJCTT-V67I8P115.
  10. J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv Prepr. arXiv1804.02767, 2018.
  11. Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object Detection in 20 Years : A Survey,” pp. 1–39, 2019.
  12. J. Redmon and A. Farhadi, “Better , Faster , Stronger,” Proc. IEEE Conf. Comput. Vis. pattern Recognit., vol. 7263–7271, pp. 7263–7271, 2017.
  13. A. Bochkovskiy, C. Wang, and H. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” arXiv Prepr. arXiv2004.10934., 2020.
  14. G. Jocher, A. Stoken, J. Borovec, L. Changyu, and ..., “ultralytics/yolov5: v3. 0,” …, 2020.
  15. X. Renjie, H. Lin, K. Lu, L. Cao, and Y. Liu, “A Forest Fire Detection System Based on Ensemble Learning,” Forests, vol. 12, no. 2, pp. 1–17, 2021.
  16. D. Harshavardhan and D. Swamy, “AN EFFICIENT CRIMINAL SEGREGATION,” pp. 636–641, 2021.
  17. Dhiraj and K. J. Deepak, “An evaluation of deep learning based object detection strategies for threat object detection in baggage security imagery ✩,” Pattern Recognit. Lett., vol. 120, pp. 112–119, 2019, doi: 10.1016/j.patrec.2019.01.014.
  18. C. Jyotsna and J. Amudha, “Detection from Surveillance Video,” ICIMIA 2020 IEEE Int. Conf. Innov. Mech. Ind. Appl., no. Icimia, pp. 335–339, 2020.
  19. S. Narejo, B. Pandey, D. Esenarro Vargas, C. Rodriguez, and M. R. Anjum, “Weapon Detection Using YOLO V3 for Smart Surveillance System,” Math. Probl. Eng., vol. 2021, 2021, doi: 10.1155/2021/9975700.
Index Terms

Computer Science
Information Sciences
Crime Detection Model

Keywords

Crime detection Public Safety Computer Vision Deep Learning YOLO model