CFP last date
20 December 2024
Reseach Article

A Numerical Solution of Troesch’s Problem via Optimal Homotopy Asymptotic Method

by M. Khalid, Mariam Sultana, Faheem Zaidi, Aurangzaib
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 140 - Number 5
Year of Publication: 2016
Authors: M. Khalid, Mariam Sultana, Faheem Zaidi, Aurangzaib
10.5120/ijca2016909315

M. Khalid, Mariam Sultana, Faheem Zaidi, Aurangzaib . A Numerical Solution of Troesch’s Problem via Optimal Homotopy Asymptotic Method. International Journal of Computer Applications. 140, 5 ( April 2016), 1-5. DOI=10.5120/ijca2016909315

@article{ 10.5120/ijca2016909315,
author = { M. Khalid, Mariam Sultana, Faheem Zaidi, Aurangzaib },
title = { A Numerical Solution of Troesch’s Problem via Optimal Homotopy Asymptotic Method },
journal = { International Journal of Computer Applications },
issue_date = { April 2016 },
volume = { 140 },
number = { 5 },
month = { April },
year = { 2016 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume140/number5/24587-2016909315/ },
doi = { 10.5120/ijca2016909315 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:41:26.692866+05:30
%A M. Khalid
%A Mariam Sultana
%A Faheem Zaidi
%A Aurangzaib
%T A Numerical Solution of Troesch’s Problem via Optimal Homotopy Asymptotic Method
%J International Journal of Computer Applications
%@ 0975-8887
%V 140
%N 5
%P 1-5
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Troesch’s problem arose while the investigation of the confinement of a plasma column by applying radiation pressure was being conducted. It is an unstable problem in itself, with a two-point boundary value. The application of the Optimal Homotopy Asymptotic Method (OHAM) is used to attain an approximate solution for the nonlinear differential equation which provides and apt description of Troesch’s problem. Opposing the other reported results, through the variational iteration method, Laplace Transform Decomposition Method, Homotopy Analysis Method, and the Homotopy Perturbation Method, the accuracy of the current solution is commendable for a remarkably wide range of values of Troesch’s parameter. A conducted error analysis clearly admits the efficiency of OHAM.

References
  1. Weibel, E.S. (1958) The plasma in magnetic field. Landshoff RKM (Ed.), Stanford University Press, Stanford. pp 60–67.
  2. Godaspow, D., Baker, B.S. (1973) A model for discharge of storage batteries, J. Electrochem. Soc., 120. pp 1005– 1010.
  3. Markin, V.S., Chernenko, A.A., Chizmadehev, Y.A., Chirkov, Y.G. (1966) Aspects of the theory of gas porous electrodes, in: V.S. Bagotskii, Y.B. Vasilev (Eds.), Fuel Cells: Their Electrochemical Kinetics, Consultants Bureau, New York, pp 21–33.
  4. Tsude, T., Ichida, K., Kiyono, T. (1967) Monte Carlo pathintergral calculations for two-point boundary-value problems, Numer. Math., 10. pp 100–116.
  5. Troesch, B.A. (1976) A simple approach to a sensitive twopoint boundary value problem, J. Comput. Phys., 21. pp 279–290.
  6. Miele, A., Aggarwal, A.K., Tietze, J.L. (1974) Solution of two-point boundary-value problems with Jacobean matrix characterized by large positive eigenvalues, J.Comput. Phys., 15. pp 117–133.
  7. Vemuri, V., Raefsky, A. (1979) On a method of solving sensitive boundary value problems, J. Franklin Inst., 307. pp 217–243.
  8. Jones, D.J. (1973) Solutions of Troesch’s and other twopoint boundary-value problems by shooting techniques, J. Comput. Phys., 12. pp 429–434.
  9. Kubicek, M., Hlavacek, V. (1975) Solution of Troesch’s two-point boundary value problem by shooting techniques, J. Comput. phys., 17. pp 95–101.
  10. Scott, M.R. (1975) On the conversion of boundary-value problems into stable initial-value problems via several invariant imbedding algorithms, Numerical solution of Boundary value problems for ODE. Aziz, A.K. (Edition), Academic Press, New York.
  11. Snyman, J.A. (1979) Continuous and discontinuous numerical solutions of the Troesch’s problem, J.Comput. Appl. Math., 5. pp 171–175.
  12. Deeba, E., Khuri, S.A., Xie, S. (2000) An algorithm for solving boundary value problems, J. Comput. Phys., 159. pp 125–138.
  13. Khuri, S.A. (2003) A numerical algorithm for solving Troesch’s problem, Int. J. Comput. Math., 80. pp 493–498.
  14. Chin, R.C.Y., Krasny, R. (1983) A hybrid asymptotic-finite element method for still two-point boundary value problems, SIAM J. Sci. Stat. Comput., 10(2). pp 229–243.
  15. Momani, S., Abuasad, S., Odibat, Z. (2006) Variational iteration method for solving nonlinear boundary value problems, Appl. Math. Comput., 183. pp 1351–1358.
  16. Feng, X., Mei, L., He, G. (2007) An efficient algorithm for solving Troesch’s problem, Appl. Math. Comput., 189(1). pp 500–507.
  17. Chang, S.H., Chang, I.L. (2008) A new algorithm for calculating one-dimensional differential transform of nonlinear functions, Appl. Math. Comput., 195. pp 799–808.
  18. Khuri, S.A., Sayfy, A. (2011) Troesch’s problem: a Bspline collocation approach, Math. Comput. Model., 54(9- 10). pp 1907–1918.
  19. Mirmoradi, S.H., Hosseinpour, I., Ghanbarpour, S., Barari, A. (2009) Application of an approximate analytical method to nonlinear Troesch’s problem, Appl. Math. Sci., 3(32). pp 1579–1585.
  20. Mohamad, A.J. (2010) Solving second order non-linear boundary value problems by four numerical methods, Eng. Tech. J., 28(2). pp 369–381.
  21. Marinca, V., Herisanu, N. (2008) Application of homotopy asymptotic method for solving non-linear equations arising in heat transfer. I. Comm. Heat Mass Trans., 35(6). pp 710–715.
  22. Herisanu, N., Marinca, V. (2010) Accurate analytical solutions to oscillators with discontinuities and fractionalpower restoring force by means of the optimal homotopy asymptotic method. Comput. Math. Appl., 60(6). pp 1607– 1615.
  23. Marinca, V., Herisanu, N. (2014) The optimal homotopy asymptotic method for solving Blasius equation, Appl. Maths. Comput., 231. pp 134–139.
  24. Iqbal, S., Idrees, M., Siddiqui, A.M., Ansari, A.R. (2010) Some solutions of the linear and nonlinear Klein-Gordon equations using the optimal homotopy asymptotic method, Appl. Math. Comput., 216(10). pp 2898–2909.
  25. Iqbal, S., Javed, A. (2011) Application of optimal homotopy asymptotic method for the analytic solution of singular Lane-Emden type equation, Appl. Math. Comput., 217(9). pp 7753–7761.
  26. Hashmi, M.S., Khan, N., Iqbal, S. (2012) Optimal homotopy asymptotic method for solving nonlinear Fredholm integral equations of second kind. Appl. Math. Comput., 218(22). pp 10982–10989.
  27. Khan, N., Mahmood, T., Hashmi, M.S. (2013) OHAM solution for thin film flow of a third order fluid through porous medium over an inclined plane. Heat Transfer Res., 44(8). pp 1–13.
  28. Hashmi, M.S., Khan, N., Mahmood, T. (2013) Optimal Homotopy Asymptotic solution for thin film flow of a third order fluid with partial slip. World Appl. Sci. J. 21(12). pp 1782–1788.
  29. Marinca, V., Herisanu, N. (2010) Determination of periodic solutions for the motion of a particle on a rotating parabola by means of the optimal homotopy asymptotic method. J. Sound Vib. 329(6). pp 1450–1459.
  30. Hassan, H.N., El-Tawil, M.A. (2011) An efficient analytic approach for solving two-point nonlinear boundary value problems by homotopy analysis method, Mathematical Methods in the Applied Sciences, 34(8). pp 977–989.
  31. Momani, S., Abuasad, S., Odibat, Z. (2006) Variational iteration method for solving nonlinear boundary value problems, Appl. Math. Comput., 183. pp 1351–1358.
Index Terms

Computer Science
Information Sciences

Keywords

Troesch’s Problem Optimal Homotopy Asymptotic Method Troesch’s Parameter Highest Degree of Accuracy