CFP last date
20 January 2025
Reseach Article

Student Progress Predictor

by R. Ksohy, A.V. Sakpal, R. More
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 140 - Number 12
Year of Publication: 2016
Authors: R. Ksohy, A.V. Sakpal, R. More
10.5120/ijca2016909521

R. Ksohy, A.V. Sakpal, R. More . Student Progress Predictor. International Journal of Computer Applications. 140, 12 ( April 2016), 28-32. DOI=10.5120/ijca2016909521

@article{ 10.5120/ijca2016909521,
author = { R. Ksohy, A.V. Sakpal, R. More },
title = { Student Progress Predictor },
journal = { International Journal of Computer Applications },
issue_date = { April 2016 },
volume = { 140 },
number = { 12 },
month = { April },
year = { 2016 },
issn = { 0975-8887 },
pages = { 28-32 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume140/number12/24646-2016909521/ },
doi = { 10.5120/ijca2016909521 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:42:16.682717+05:30
%A R. Ksohy
%A A.V. Sakpal
%A R. More
%T Student Progress Predictor
%J International Journal of Computer Applications
%@ 0975-8887
%V 140
%N 12
%P 28-32
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Using data mining algorithms can help discover-ing pedagogically relevant knowledge contained in databases obtained from Web-based educational systems. These findings can be used both to help teachers with managing their class, understand their students learning and reflect on their teaching and to support learner reflection and provide proactive feedback to learners.

References
  1. Han, J. M. Kamber, Data mining: concepts and techniques, San Francisco: Morgan Kaufman (2012).
  2. Agrawal, R. R. Srikant. ”Fast Algorithms for Mining Association Rules” in Proceedings of VLDB, Santiago, Chile (2010).
  3. SPSS, Clementine, www.spss.com/clementine/ (accessed 2011).
  4. SODAS,http://www.ceremade.dauphine.fr/touati/sodaspagegarde. html (accessed 2013)
  5. Witten, E. Frank, Data Mining, Practical Machine LearningTools and Techniques with Java Implementation, Morgan Kaufmann Publishers, 2010.
  6. R. Kirkby, WEKA Explorer User Guide for version 3-3-4, University of Weikato, 2012.
  7. M. H. Dunham, Data Mining, Introductory and Advanced Topics, Prentice Hall, 2012.
Index Terms

Computer Science
Information Sciences

Keywords

EDM ANN WEKA