We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

An Efficient Four Channels 3D Plasmonic Demultiplexer

by Mohammed Nadhim Abbas, Ahmed Abdulredha Ali
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 130 - Number 9
Year of Publication: 2015
Authors: Mohammed Nadhim Abbas, Ahmed Abdulredha Ali
10.5120/ijca2015907116

Mohammed Nadhim Abbas, Ahmed Abdulredha Ali . An Efficient Four Channels 3D Plasmonic Demultiplexer. International Journal of Computer Applications. 130, 9 ( November 2015), 37-41. DOI=10.5120/ijca2015907116

@article{ 10.5120/ijca2015907116,
author = { Mohammed Nadhim Abbas, Ahmed Abdulredha Ali },
title = { An Efficient Four Channels 3D Plasmonic Demultiplexer },
journal = { International Journal of Computer Applications },
issue_date = { November 2015 },
volume = { 130 },
number = { 9 },
month = { November },
year = { 2015 },
issn = { 0975-8887 },
pages = { 37-41 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume130/number9/23239-2015907116/ },
doi = { 10.5120/ijca2015907116 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:24:57.080668+05:30
%A Mohammed Nadhim Abbas
%A Ahmed Abdulredha Ali
%T An Efficient Four Channels 3D Plasmonic Demultiplexer
%J International Journal of Computer Applications
%@ 0975-8887
%V 130
%N 9
%P 37-41
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The four channels of 3D plasmonic demultiplexer structure are selective based, on a nanocavity, that proposed, and numerically simulated, by using the finite, element method by using COMSOL4.4 software package The required, filtered wavelength can, be investigated, by selecting, an appropriate length of, the nanocavity and refractive index of dielectric that filled nanocavity. The selecting wavelength of for 3D channels are dependent on three geometric parameters thickness , width and length. Four, output channels, structure based, on four perpendicular, nanocavities that, proposed to, design a subwavelength, plasmonic splitter, and demultiplexer. 3D plasmonic demultiplexer with 1× 4 channels it's peak transmisson of four channels occurs at around the wavelengths of 810nm, 990nm, 1210nm and 1500nm ,with transmittance effeceincy are 57% , 72%, 74%, 70% respectively.Three materials used to build structure ,metal used as a silver and two types of dielectric quartz with refractive index 1.5 and air with refractive index 1."

References
  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
  2. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17(9), 7549–7554 (2009).
  3. C. Genet, and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
  4. C. Janke, J. G. Rivas, P. H. Bolivar, and H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett. 30(18), 2357–2359 (2005).
  5. C. J. Min, P. Wang, C. C. Chen, Y. Deng, Y. H. Lu, H. Ming, T. Y. Ning, Y. L. Zhou, and G. Z. Yang, “Alloptical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).
  6. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
  7. B. Wang, and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
  8. G. Veronis, and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
  9. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface Plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833 (2004).
  10. S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surfaceplasmon Bragg mirrors,” Opt. Express 18(14), 14496–14510 (2010).
  11. S. Enoch, R. Quidant, and G. Badenes, “Optical sensing based on plasmon coupling in nanoparticle arrays,” Opt. Express 12(15), 3422–3427 (2004).
  12. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008).
  13. Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17(16), 13727–13736 (2009).
  14. J. W. Mu, and W. P. Huang, “A Low-Loss Surface Plasmonic Bragg Grating,” J. Lightwave Technol. 27(4), 436–439 (2009).
  15. X. S. Lin, and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
  16. J. Tao, X. G. Huang, X. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17(16), 13989–13994 (2009).
  17. S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
  18. A. Hosseini, and Y. Massoud, “Nanoscale surface Plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
  19. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009).
  20. A. Noual, A. Akjouj, Y. Pennec, J. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Ybent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
  21. A. Taflove, and S. C. Hagness, “Computational Electrodynamics: The Finite-Difference Time-Domain Method,” 2nd ed. 2000 (Artech House, Boston).
  22. P.B. Johnson and R.W. Christy "Optical Constant of the Nobel Metals" Physical Review B volume 6, number 12 15 December 1972.
  23. CHEN Zhao.YU Li,WANG Lu-Lu, ZHAO Yu-Fang, DAN Gao-Yan, XIAO Jing-Hua" High-Resolution Compact Plasmonic Wavelength Demultiplexers Based on Cascading Square Resonators" Vol. 30, No. 5 (2013) 054212.
Index Terms

Computer Science
Information Sciences

Keywords

Plasmonics Surface plasmon polration 3D nanocavity waveguide resonance wavelength 3D plasmonic demultiplexer.