CFP last date
20 January 2025
Reseach Article

Performance Enhancement of CPMIMO-OFDM System using Blind Channel Estimation

by Megha Kimothi, Vivek Kumar Gupta, S.c.gupta
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 118 - Number 21
Year of Publication: 2015
Authors: Megha Kimothi, Vivek Kumar Gupta, S.c.gupta
10.5120/20869-3299

Megha Kimothi, Vivek Kumar Gupta, S.c.gupta . Performance Enhancement of CPMIMO-OFDM System using Blind Channel Estimation. International Journal of Computer Applications. 118, 21 ( May 2015), 14-18. DOI=10.5120/20869-3299

@article{ 10.5120/20869-3299,
author = { Megha Kimothi, Vivek Kumar Gupta, S.c.gupta },
title = { Performance Enhancement of CPMIMO-OFDM System using Blind Channel Estimation },
journal = { International Journal of Computer Applications },
issue_date = { May 2015 },
volume = { 118 },
number = { 21 },
month = { May },
year = { 2015 },
issn = { 0975-8887 },
pages = { 14-18 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume118/number21/20869-3299/ },
doi = { 10.5120/20869-3299 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:02:20.791309+05:30
%A Megha Kimothi
%A Vivek Kumar Gupta
%A S.c.gupta
%T Performance Enhancement of CPMIMO-OFDM System using Blind Channel Estimation
%J International Journal of Computer Applications
%@ 0975-8887
%V 118
%N 21
%P 14-18
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper deals with the blind channel estimation in CP MIMO-OFDM system based on subspace algorithm with reduced time samples to get time invariant system, eliminating the pilot based channel estimation and utilizing the bandwidth. This paper uses the statistical blind estimation technique by using second order statistic and in this the estimates can be obtained in a simple form by optimizing a quadratic cost function. These algorithms use the orthogonality of the noise and signal subspaces of the correlation matrix of the received signals to estimate the unknown channel coefficients. Simulation results show that the proposed approach improving the performance, observed by the graphs SER/SNR and MSE/SNR.

References
  1. R. A. Kennedy and Z. Ding, "Blind Adaptive Equalizers for QAM Communication Systems Based on Convex Cost Functions", SPIE Optical Engineering. June 1992.
  2. L. Tong, G. Xu and T. Kailath "A new approach to blind identification and equalization of multipath channel. ," Proc. Aailomar Conf. Signal, Systems and computers, November 1991.
  3. J. A. Cadzow, "Blind deconvolution via cumulant extrema:' IEEE Signal Processing Magazine, vol. 13, no. 3, pp. 2442. May 1996.
  4. L. Tong, G. Xu, and T. Kailath. "Blind identification and equalization based on second-order statistics: A time domain approach,'' IEEE Transactions on Information Theory, vol. 40, no. 2, pp. 340-349, Mar. 1994.
  5. G. Xu, H. Liu, L. Tong, and T. Kailath, "A least-squares approach to blind channel identification," IEEE Trans. Signal Process. , vol. 43, no. 12, pp. 2982–2993, Dec. 1995.
  6. G. B. Giannakis and C. Tepedelenlioglu, "Direct blind equalizers of multiple FIR channels: A deterministic approach," IEEE Trans. Signal Process. , vol. 47, no. 1, pp. 62–74, Jan. 1999.
  7. G. J. Foschini, and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Commun. , vol. 6, pp. 311-335, 1998.
  8. E. de Carvalho, and D. Slock, "Blind and semi-blind FIR multi channel estimation: (global) identifiability conditions," IEEE Trans.
  9. Signal Processing, vol. 52, pp. 1053-1064, Apr. 2004.
  10. K. Abed-Meraim, P. Loubaton, and E. Moulines, "A subspace algorithm for certain blind identification problem," IEEE Trans. Inform. Theory, vol. 32, pp. 499-511, Apr. 1997.
  11. C. Shin, R. W. Heath, Jr. , and E. J. Powers, "Blind channel estimation for MIMO-OFDM systems," IEEE Trans. Veh. Technol. , vol. 56, no. 2, pp. 670–685, Mar. 2007.
  12. TGn Sync Proposal Technical Specification IEEE 802. 11-05/1095r2.
  13. Y. Zeng, and T. S. Ng, "A semi-blind channel estimation method for multiuser multiantenna OFDM systems," IEEE Trans. Signal Processing, vol. 52, pp. 1419-1429, May, 2004.
  14. E. Moulines, P. Duhamel, J. F. Cardoso, and S. Mayrargue, "Subspace methods for the blind identification of multichannel FIR filters," IEEE Trans. Signal Processing, vol. 43, pp. 516-525, Feb. 1995.
  15. Y. Li and Z. Ding, "Blind channel identification based on second order cyclostationary statistics," in Proc. IEEE Int. Conf. Acoust. , Speech, Signal Process. , Apr. 1993, vol. 4, pp. 81–84.
  16. F. Gao, Y. Zeng, A. Nallanathan, and T. -S. Ng, "Robust subspace blind channel estimation for cyclic prefixed MIMO OFDM systems: Algorithm, identifiability and performance analysis," IEEE J. Sel. Areas Commun. , vol. 26, no. 2, pp. 378–388, Feb. 2008
  17. L. Tong, G. Xu, and T. Kailath, "Blind identification and equalization based on second-order statistics: A time domain approach," IEEE Trans. Inf. Theory, vol. 40, no. 2, pp. 340–349, Mar. 1994.
  18. L. Tong and S. Perreau, "Multichannel blind identification: From subspace to maximum likelihood methods," Proc. IEEE, vol. 86, no. 10, pp. 1951–1968, Oct. 1998.
  19. L. Tong, G. Xu, B. Hassibi, and T. Kailath, "Blind channel identification based on second-order statistics: A frequency-domain approach," IEEE Trans. Inf. Theory, vol. 41, no. 1, pp. 329–334, Jan. 1995.
  20. http:en. m. wikipedia. org/wiki/eigendecomposition_of_ a_mat-rix.
  21. Schmidt, R. O. "Multiple emitter location and signal parameter estimation. " IEEE Transaction on antennas and propagation. Vol. AP-34, March 1986,pp. 276-280.
Index Terms

Computer Science
Information Sciences

Keywords

Blind channel estimation MIMO-OFDM CPSOS ZPSOS mean square error subspace algorithm.