CFP last date
20 January 2025
Reseach Article

Classification of High Resolution Urban satellites Images using SVM and Haralick Features with a Hybrid Median Filter

Published on September 2012 by Aissam Bekkari, Soufian Idbraim, Azeddine Elhassouny, Driss Mammass, Mostapha El Yassa, Danielle Ducrot
Software Engineering, Databases and Expert Systems
Foundation of Computer Science USA
SEDEX - Number 1
September 2012
Authors: Aissam Bekkari, Soufian Idbraim, Azeddine Elhassouny, Driss Mammass, Mostapha El Yassa, Danielle Ducrot
e65b17f8-d601-4af7-a04b-93f8e71446be

Aissam Bekkari, Soufian Idbraim, Azeddine Elhassouny, Driss Mammass, Mostapha El Yassa, Danielle Ducrot . Classification of High Resolution Urban satellites Images using SVM and Haralick Features with a Hybrid Median Filter. Software Engineering, Databases and Expert Systems. SEDEX, 1 (September 2012), 35-40.

@article{
author = { Aissam Bekkari, Soufian Idbraim, Azeddine Elhassouny, Driss Mammass, Mostapha El Yassa, Danielle Ducrot },
title = { Classification of High Resolution Urban satellites Images using SVM and Haralick Features with a Hybrid Median Filter },
journal = { Software Engineering, Databases and Expert Systems },
issue_date = { September 2012 },
volume = { SEDEX },
number = { 1 },
month = { September },
year = { 2012 },
issn = 0975-8887,
pages = { 35-40 },
numpages = 6,
url = { /specialissues/sedex/number1/8356-1007/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Special Issue Article
%1 Software Engineering, Databases and Expert Systems
%A Aissam Bekkari
%A Soufian Idbraim
%A Azeddine Elhassouny
%A Driss Mammass
%A Mostapha El Yassa
%A Danielle Ducrot
%T Classification of High Resolution Urban satellites Images using SVM and Haralick Features with a Hybrid Median Filter
%J Software Engineering, Databases and Expert Systems
%@ 0975-8887
%V SEDEX
%N 1
%P 35-40
%D 2012
%I International Journal of Computer Applications
Abstract

The classification of remotely sensed images knows a large progress taking in consideration the availability of images with different resolutions as well as the abundance of classification's algorithms. A number of works have shown promising results by the fusion of spatial and spectral information using Support vector machines (SVM). For this purpose, we propose a methodology exploiting a composite kernel that easily combines multi-spectral features, Haralick texture features and Hybrid Median Filter, with different window sizes. The proposed approach was tested on common scenes of urban imagery. The result shows that the combined use of spectral and texture information together significantly improved the accuracy of satellite image classification.

References
  1. Samson C. 2000 "Contribution à la classification des images satellitaires par approche variationnelle et équations aux dérivées partielles" : Thesis of doctorate, university of Nice-Sophia Antipolis.
  2. Townshend, J. R. G. , 1992 "Land cover". International Journal of Remote Sensing 13:1319–1328.
  3. Hall, F. G. , Townshend, J. R. , Engman, E. T. , 1995 "Status of remote sensing algorithms for estimation of land surface state parameters. " Remote Sensing of Environment 51:138–156.
  4. Lu, D. ,Weng, Q. ,2007 "A survey of image classification methods and techniques for improving classification performance. " International Journal of Remote Sensing 28:823–870.
  5. Huang, C. , Davis, L. S. , and Townshed, J. R. G. , 2002 "An assessment of support vector machines for land cover classification. "International Journal of Remote Sensing 23:725–749.
  6. Kavzoglu, T. , Reis, S. , 2008 "Performance analysis of maximum likelihood and artificial neural network classifiers for training sets with mixed pixels. " GIScience and Remote Sensing 45:330–342.
  7. Pal, M. , and Mather, P. M. 2005. "Support vector machines for classification in remote sensing. " International Journal of Remote Sensing, 26:1007?1011.
  8. Zhu, G. , and Blumberg, D. G. 2002. "Classification using ASTER data and SVM algorithms: The case study of Beer Sheva, Israel. " Remote Sensing of Environment, 80:233-240.
  9. Cao X. , Chen J. , Imura H. , Higashi O. , 2009 "A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data", Remote Sensing of Environment 113:2205–2209.
  10. Inglada J. , 2007 "Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features", ISPRS Journal of Photogrammetry & Remote Sensing 62:236–248.
  11. Bekkari A. , Idbraim S. , Mammass D. and El yassa M. 2011 "Exploiting spectral and space information in classification of high resolution urban satellites images using Haralick features and SVM" IEEE 2ed International Conference on Multimedia Computing and Systems ICMCS'11 , Ouarzazate, Morocco.
  12. Fauvel M. , Benediktsson, J. A. , Chanussot J. and Sveinsson, J. R. , 2007 "Spectral and Spatial Classi?cation of Hyperspectral Data Using SVMs and Morphological Pro?les" IEEE International Geoscience and Remote Sensing Symposium, IGARSS 07, Barcelona Spain.
  13. Chiu, W. Y. , and Couloigner I. 2004 "Evaluation of incorporating texture into wetland mapping from multispectral images" University of Calgary, Department of Geomatics Engineering, Calgary, Canada, EARSeL eProceedings.
  14. Chapel L. 2007 " Maintenir la viabilité ou la résilience d'un système : les machines à vecteurs de support pour rompre la malédiction de la dimensionnalité ? " : Thesis of doctorate, university of Blaise Pascal - Clermont II.
  15. Q. Yang, 2011 "A Hybrid Median Filter for Enhancing Dim Small Point Targets and Its Fast Implementation" in IEEE International Conference on Multimedia and Signal Processing CMSP, 1:239 – 242.
  16. Aseervatham S. 2007 "Apprentissage à base de Noyaux Sémantiques pour le traitement de données textuelles": Thesis of doctorate, university of Paris 13 –Galilée Institut Laboratory of Data processing of Paris Nord.
  17. Bousquet O. , 2001 "Introduction au Support Vector Machines (SVM) ", Center mathematics applied, polytechnique school of Palaiseau. http://www. math. u-psud. fr/~blanchard/gtsvm/index. html.
  18. Fauvel M. , Chanussot J. and Benediktsson J. A. 2006 "A Combined Support Vector Machines Classification Based on Decision Fusion" IEEE International Geoscience and Remote Sensing Symposium, IGARSS 06, Denver, USA.
  19. J. -T. Sun, B. -Y. Zhang, Z. Chen, Y. -C. Lu, C. -Y. Shi, and W. Ma, (Sept 2004) "GE-CKO: A method to optimize composite kernels for web page classification," in IEEE/WIC/ACM International Conference on Web Intelligence, WI04, 1:299–305.
  20. Camps-Valls G. , Gomez-Chova L. , Munoz-Mari J. , Vila-Francés J. , and Calpe-Maravilla J. January 2006 "Composite kernels for hyperspectral image classification. " IEEE Geoscience Remote Sensing Letters, 3(1):93–97
Index Terms

Computer Science
Information Sciences

Keywords

Svm Composite Kernels Haralick Features Hybrid Median Filter Satellite Image Spectral And Spatial Information Glcm