CFP last date
20 February 2025
Reseach Article

Marathi Handwritten Numeral Recognition using Fourier Descriptors and Normalized Chain Code

Published on None 2010 by G. G. Rajput, S. M. Mali
Recent Trends in Image Processing and Pattern Recognition
Foundation of Computer Science USA
RTIPPR - Number 3
None 2010
Authors: G. G. Rajput, S. M. Mali
cfa14dee-3cc2-4dc7-9e1e-bc826fd11b82

G. G. Rajput, S. M. Mali . Marathi Handwritten Numeral Recognition using Fourier Descriptors and Normalized Chain Code. Recent Trends in Image Processing and Pattern Recognition. RTIPPR, 3 (None 2010), 141-145.

@article{
author = { G. G. Rajput, S. M. Mali },
title = { Marathi Handwritten Numeral Recognition using Fourier Descriptors and Normalized Chain Code },
journal = { Recent Trends in Image Processing and Pattern Recognition },
issue_date = { None 2010 },
volume = { RTIPPR },
number = { 3 },
month = { None },
year = { 2010 },
issn = 0975-8887,
pages = { 141-145 },
numpages = 5,
url = { /specialissues/rtippr/number3/989-112/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Special Issue Article
%1 Recent Trends in Image Processing and Pattern Recognition
%A G. G. Rajput
%A S. M. Mali
%T Marathi Handwritten Numeral Recognition using Fourier Descriptors and Normalized Chain Code
%J Recent Trends in Image Processing and Pattern Recognition
%@ 0975-8887
%V RTIPPR
%N 3
%P 141-145
%D 2010
%I International Journal of Computer Applications
Abstract

In this paper, we present a novel method for automatic recognition of isolated Marathi handwritten numerals. Chain code and Fourier Descriptors that capture the information about the shape of the numeral are used as features. After preprocessing the numeral image, the normalized chain code and the Fourier descriptors of the contour of the numeral are extracted. These features are then fed in the Support Vector Machine (SVM) for classification. The proposed method is experimented on a database of 12690 samples of Marathi handwritten numeral using fivefold cross validation technique. We have obtained recognition accuracy of 98.15%.

References
  1. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner 1998. Gradient-based learning applied to document recognition, Proc. IEEE 86 (11), 2278–2324.
  2. V.N. Vapnik 1995, The Nature of Statistical Learning Theory, Springer, New York.
  3. R.O. Duda, P.E. Hart, D.G. Stork 2001. Pattern Classification, second ed., Wiley- Interscience, New York.
  4. T. Hastie, R. Tibshirani, J. Friedman 2001. The elements of statistical learning, Springer Series in Statistics, Springer, New York.
  5. Plamondon Rejean & Sargur N, Srihari 2000. On line & off line handwriting recognition: A comprehensive survey”, IEEE Transactions on PAMI, 22 (1).
  6. U. Pal and B. B. Chaudhuri 2000. Automatic Recognition of Unconstrained Off-line Bangla Hand-written Numerals”, Proc. Advances in Multimodal Interfaces, Springer Verlag Lecture Notes on Computer Science (LNCS-1948), 371-378.
  7. N. Tripathy, M. Panda and U. Pal 2004. A System for Oriya Handwritten Numeral Recognition, SPIE Proceedings, Vol.-5296, Eds. E. H. Barney Smith, J. Hu and J. Allan, 174-181.
  8. Y. Wen, Y. Lu, P. Shi 2007. Handwritten Bangla numeral recognition system and its application to postal automation, Pattern Recognition, 40 (1): 99-107.
  9. G.G. Rajput and Mallikarjun Hangarge 2007. Recognition of isolated handwritten Kannada numerals based on image fusion method', PReMI07, LNCS.4815,153-160.
  10. Reena Bajaj, Lipika Dey and Santanu Chaudhuri 2002. Marathi numeral recognition by combining decision of multiple connectionist classifiers, Vol. 27, Part 1,59–72, February 2002.
  11. M. Hanmandlu and O. V. R. Murthy 2005. Fuzzy Model Based Recognition of Handwritten Hindi Numerals, In Proc. Intl. Conf. on Cognition and Recognition, 490-496.
  12. N. Sharma, U. Pal, F. Kimura and S. Pal 2006. Recognition of Offline Handwritten Devanagari Characters using Quadratic Classifier, LNCS, Vol 4338/2006. Springer Verlag, 805-816.
  13. P.M. Patil, T.R. Sontakke 2007. 'Rotation scale and translation invariant handwritten Devanagiri numeral character recognition using fuzzy neural network', Elsevier, Pattern Recognition, vol. 40, 2110-2117.
  14. R. J. Ramteke and S. C. Mehrotra 2008. Recognition of Handwritten Marathi Numerals, International Journal of Computer Processing of Oriental Languages Ó Chinese Language Computer Society &World Scientific Publishing Company.
  15. Gonzalez and Woods 2002. Digital Image Processing, 2/e. Pearson Education.
  16. Eric Persoon and King-sun Fu 1977. Shape Discrimination Using Fourier Descriptors. IEEE Trans. On Systems, Man and Cybernetics, Vol. SMC- 7(3):170-179.
  17. Fethi Smach, Cedric Lemaître, Jean-Paul Gauthier Johel Miteran, Mohamed Atri 2008. Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context, J Math Imaging Vis, Springer Science+Business Media 30: 43–71.
  18. H. Freeman, Computer Processing of Line Drawings, Computing Surveys, Vol. 6, 57-97
  19. Vapnik, V.N. 1998. The Statistical Learning Theory, Springer, Berlin.
  20. C. J. C. Burges. A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge.
Index Terms

Computer Science
Information Sciences

Keywords

Marathi handwritten numerals feature extraction Fourier descriptors chain code Support Vector Machines