CFP last date
20 December 2024
Reseach Article

Kannada, Telugu and Devanagari Handwritten Numeral Recognition with Probabilistic Neural Network:A Novel Approach

Published on None 2010 by B.V.Dhandra, R.G.Benne, Mallikarjun Hangarge
Recent Trends in Image Processing and Pattern Recognition
Foundation of Computer Science USA
RTIPPR - Number 2
None 2010
Authors: B.V.Dhandra, R.G.Benne, Mallikarjun Hangarge
0dd240f0-b9b7-4cf5-84d7-430a480c2025

B.V.Dhandra, R.G.Benne, Mallikarjun Hangarge . Kannada, Telugu and Devanagari Handwritten Numeral Recognition with Probabilistic Neural Network:A Novel Approach. Recent Trends in Image Processing and Pattern Recognition. RTIPPR, 2 (None 2010), 83-88.

@article{
author = { B.V.Dhandra, R.G.Benne, Mallikarjun Hangarge },
title = { Kannada, Telugu and Devanagari Handwritten Numeral Recognition with Probabilistic Neural Network:A Novel Approach },
journal = { Recent Trends in Image Processing and Pattern Recognition },
issue_date = { None 2010 },
volume = { RTIPPR },
number = { 2 },
month = { None },
year = { 2010 },
issn = 0975-8887,
pages = { 83-88 },
numpages = 6,
url = { /specialissues/rtippr/number2/980-103/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Special Issue Article
%1 Recent Trends in Image Processing and Pattern Recognition
%A B.V.Dhandra
%A R.G.Benne
%A Mallikarjun Hangarge
%T Kannada, Telugu and Devanagari Handwritten Numeral Recognition with Probabilistic Neural Network:A Novel Approach
%J Recent Trends in Image Processing and Pattern Recognition
%@ 0975-8887
%V RTIPPR
%N 2
%P 83-88
%D 2010
%I International Journal of Computer Applications
Abstract

In this paper, a novel approach for Kannada, Telugu and Devanagari handwritten numerals recognition based on global and local structural features is proposed. Probabilistic Neural Network (PNN) Classifier is used to classify the Kannada, Telugu and Devanagari numerals separately. Algorithm is validated with Kannada, Telugu and Devanagari numerals dataset by setting various radial values of PNN classifier under different experimental setup. The experimental results obtained are encouraging and comparable with other methods found in literature survey. The novelty of the proposed method is free from thinning and size normalization.

References
  1. A.L.Koerich, R. Sabourin, C.Y.Suen, “Large off-lineHandwritten Recognition: A survey”, Pattern Analysis Application, 97-121, 2003.
  2. J.D. Tubes, A note on binary template matching. Pattern Recognition, 22(4):359-365, 1989.
  3. Ivind due trier, anil Jain, torfiinn Taxt, “A feature extraction method for character recognition-A survey “, pattern Recg, vol 29, No 4, pp-641-662, 1996
  4. A.F.R. Rahman, R.Rahman, M.C.Fairhurst, “Recognition of handwritten Bengali Characters: A Novel Multistage Approach”, Pattern Recognition, 35,997-1006, 2002.
  5. R. Chandrashekaran, M.Chandrasekaran, Gift Siromaney , “Computer Recognition of Tamil, Malayalam and Devanagari characters”, Journal of IETE, Vol.30, No.6, 1984.
  6. P.Nagabhushan, S.A.Angadi, B.S.Anami, “A fuzzy statistical approach of Kannada Vowel Recognition based on Invariant Moments”, NCDAR-2003, Mandy, India, pp275-285, 2003.
  7. Dinesh Acharya U, N V Subba Reddy and Krishnamoorthi, “Isolated handwritten Kannada numeral recognition using structural feature and K-means cluster”, IISN-2007, pp-125-129, 2007.
  8. N. Sharma, U. Pal, F. Kimura, "Recognition of Handwritten Kannada Numerals", ICIT, pp. 133-136, ICIT'06, 2006.
  9. B.V. Dhandra, V.S. Mallimath, Mallikargun Hangargi and Ravindra Hegadi, “Multi-font Numeral recognition without Thinning based on Directional Density of pixels”, ICDIM-2006, Bangalore, India, pp.157-160, Dec-2006.
  10. U Pal and P.P.Roy, “Multi-oriented and curved text lines extraction from Indian documents”, IEEE Trans on system, Man and Cybernetics-Part B, vol.34, pp.1667-1684, 2004.
  11. B.V. Dhandra, R.G.Benne and M. Hangargi, “Handwritten Kannada Numeral recognition based on structural features”, IEEE-ICCIMA-07, pp.157-160, Dec-2007.
  12. R Sanjeev Kunte and Sudhakar Samuel R.D, “Script Independent Handwritten Numeral recognition”, VIE-2006, pp 94-98, Sep-2006
  13. R.C.Gonzal, R.E.Woods, “Digital Image Processing”, Edn-2002.
  14. Rajput, G.G., Mallikarjun Hangarge, “Recognition of Isolated Handwritten Kannada Numeral based on Image fusion method”, PReMI07,LNCS, Vol. 4815, Springer Kolkatta, pp153-160, 2007.
  15. V. N. Manjunath Aradhya, G. Hemanth Kumar and S. Noushath, Robust Unconstrained Handwritten Digit Recognition Using Radon Transform, Proc. of IEEE-ICSCN 2007, pp-626-629, (2007).
  16. B.V. Dhandra, R.G.Benne and Mallikargun Hangargi, “Isolated Handwritten Kannada Numeral recognition based on Template matching”, IEEE-ACVIT -07, pp.1276-1282, Dec-2007.
  17. S.N.Sivanandam, S.Sumathi and S.N.Deepa,” Introduction to Neural Networks”, The McGraw-Hill publication.
  18. S.V.Rajashekararadhya and P.V.Vanaja Ranjan,”Neural network based handwritten numeral recognition of Kannada and Telugu scripts”,TENCON 2008.
  19. Rajput, G.G., and S.M. Mali, “Recognition of isolated Marathi handwritten numeral using Fourier descriptors and SVM”, RTIPR-2010, pp 135-138,Feb 2010.
  20. R.J.Ramteke and S.C.Mehrotra, “Recognition Handwritten Devanagari Numerals”, International journal of Computer processing of Oriental languages, 2008.
  21. B.V. Dhandra, R.G.Benne and M. Hangargi, ”Bi-lingual handwritten numeral recognition with Probalistic nural network: A approach”, RTIPPR-2010, pp 91-94.
Index Terms

Computer Science
Information Sciences

Keywords

OCR Probabilistic Neural Network (PNN) Handwritten Numeral Recognition Structural feature Indian script