CFP last date
20 January 2025
Reseach Article

A Survey on Deformable Model and its Applications to Medical Imaging

Published on None 2010 by Ravindra Hegadi, Arpana Kop, Mallikarjun Hangarge
Recent Trends in Image Processing and Pattern Recognition
Foundation of Computer Science USA
RTIPPR - Number 2
None 2010
Authors: Ravindra Hegadi, Arpana Kop, Mallikarjun Hangarge
f42f5a2d-b2e8-431a-aa5f-ba62b82b069e

Ravindra Hegadi, Arpana Kop, Mallikarjun Hangarge . A Survey on Deformable Model and its Applications to Medical Imaging. Recent Trends in Image Processing and Pattern Recognition. RTIPPR, 2 (None 2010), 64-75.

@article{
author = { Ravindra Hegadi, Arpana Kop, Mallikarjun Hangarge },
title = { A Survey on Deformable Model and its Applications to Medical Imaging },
journal = { Recent Trends in Image Processing and Pattern Recognition },
issue_date = { None 2010 },
volume = { RTIPPR },
number = { 2 },
month = { None },
year = { 2010 },
issn = 0975-8887,
pages = { 64-75 },
numpages = 12,
url = { /specialissues/rtippr/number2/978-101/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Special Issue Article
%1 Recent Trends in Image Processing and Pattern Recognition
%A Ravindra Hegadi
%A Arpana Kop
%A Mallikarjun Hangarge
%T A Survey on Deformable Model and its Applications to Medical Imaging
%J Recent Trends in Image Processing and Pattern Recognition
%@ 0975-8887
%V RTIPPR
%N 2
%P 64-75
%D 2010
%I International Journal of Computer Applications
Abstract

Deformable models provide a promising and vigorously researched model-based approach to computer-assisted medical image analysis. The widely recognized potency of deformable models stems from their ability to segment, match, and track images of anatomic structures by exploiting (bottom-up) constraints derived from the image data together with (top-down) a priori knowledge about the location, size, and shape of these structures. In this paper, a survey of deformable models and their latest extensions are presented.

References
  1. Tim McInerney and Demetri Terzopoulous, Dept of Computer Science, University of Toronto, “Deformable Models in Medical Image Analysis: A survey”, Medical Image Analysis, 1(2), 1996.
  2. C. Xu and J. L. Prince, “Generalized gradient vector flow external forces for active contours”, Signal Processing - An International Journal, vol. 71, no. 2, pp. 131–139, 1998.
  3. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” Int’l J. Comp. Vis., vol. 1, no. 4, pp. 321–331, 1987.
  4. D. Terzopoulos and K. Fleischer, “Deformable models,” The Visual Computer, vol. 4, pp. 306–331, 1988.
  5. D. Terzopoulos, A. Witkin, and M. Kass, “Constraints on deformable models: recovering 3D shape and nonrigid motion,” Artificial Intelligence, vol. 36, no. 1, pp. 91– 123, 1988.
  6. M. A. Fischler and R. A. Elschlager, “The representation and matching of pictorial structures,” IEEE Trans. on Computers, vol. 22, no. 1, pp. 67–92, 1973.
  7. B. Widrow, “The “rubber-mask” technique,” Pattern Recognition, vol. 5, pp. 175– 211, 1973
  8. A. A. Amini, T. E. Weymouth, and R. C. Jain, “Using dynamic programming for solving variational problems in vision,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 12, no. 9, pp. 855–867, 1990.
  9. L. D. Cohen, “On active contour models and balloons,” CVGIP: Imag. Under., vol. 53, no. 2, pp. 211–218, 1991.
  10. T. McInerney and D. Terzopoulos, “A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis,” Comp. Med. Imag. Graph., vol. 19, no. 1, pp. 69–83, 1995.
  11. V. Caselles, F. Catte, T. Coll, and F. Dibos, “A geometric model for active contours,” Numerische Mathematik, vol. 66, pp. 1–31, 1993.
  12. R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front propagation: a level set approach,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 17, no. 2, pp. 158– 175, 1995.
  13. V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” in Proc. 5th Int’l Conf. Comp. Vis., pp. 694–699, 1995.
  14. R. T. Whitaker, “Volumetric deformable models: active blobs,” Tech. Rep. ECRC-94-25, European Computer-Industry Research Centre GmbH, 1994.
  15. G. Sapiro and A. Tannenbaum, “Affine invariant scale-space,” Int’l J. Comp. Vis., vol. 11, no. 1, pp. 25–44, 1993
  16. B. B. Kimia, A. R. Tannenbaum, and S. W. Zucker, “Shapes, shocks, and deformations I: the components of two-dimensional shape and the reaction-diffusion space,” Int’l J. Comp. Vis., vol. 15, pp. 189–224, 1995.
  17. R. Kimmel, A. Amir, and A. M. Bruckstein, “Finding shortest paths on surfaces using level sets propagation,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 17, no. 6, pp. 635– 640, 1995
  18. L. Alvarez, F. Guichard, P. L. Lions, and J. M. Morel, “Axioms and fundamental equations of image processing,” Archive for Rational Mechanics and Analysis, vol. 123, no. 3, pp. 199–257, 1993
  19. S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Computational Physics, vol. 79, pp. 12–49, 1988.
  20. J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science. Cambridge, UK: Cambridge University Press, 2nd ed., 1999.
  21. I. Cohen, L. D. Cohen, and N. Ayache, “Using deformable surfaces to segment 3-D images and infer differential structures,” CVGIP: Imag. Under., vol. 56, no. 2, pp. 242–263, 1992.
  22. J. L. Prince and C. Xu, “Nonconservative force models in active geometry,” in Proc. IEEE Image and Multidimensional Signal Processing Workshop (IMDSP’98), pp. 139–142, 1998.
  23. R. Ronfard, “Region-based strategies for active contour models,” Int’l J. Comp. Vis., vol. 13, no. 2, pp. 229–251, 1994.
  24. C. S. Poon and M. Braun, “Image segmentation by a deformable contour model incorporating region analysis,” Phys. Med. Biol., vol. 42, pp. 1833–1841, 1997.
  25. H. Tek and B. B. Kimia, “Volumetric segmentation of medical images by three-dimensional bubbles,” Comp. Vis. Imag. Under., vol. 65, pp. 246–258, 1997.
  26. L. D. Cohen and I. Cohen, “Finite- element methods for active contour models and balloons for 2-D and 3-D images,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 15, no. 11, pp. 1131–1147, 1993.
  27. P. E. Danielsson, “Euclidean distance mapping,” Comp. Graph. Imag. Proc., vol. 14, pp. 227–248, 1980.
  28. G. Borgefors, “Distance transformations in arbitrary dimensions,” Comp. Vis. Graph. Imag. Proc., vol. 27, pp. 321–345, 1984.
  29. C. Xu and J. L. Prince, “Snakes, shapes, and gradient vector flow,” IEEE Trans. Imag. Proc., vol. 7, no. 3, pp. 359–369, 1998.
  30. D. J. Williams and M. Shah, “A fast algorithm for active contours and curvature estimation,” CVGIP: Imag. Under., vol. 55, no. 1, pp. 14–26, 1992.
  31. D. Terzopoulos and D. Metaxas, “Dynamic 3D models with local and global deformations: deformable superquadrics,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 13, pp. 703–714, 1991
  32. A. Gupta, L. von Kurowski, A. Singh, D. Geiger, C. C. Liang, M. Y. Chiu, L. P. Adler, M. Haacke, and D. L. Wilson, “Cardiac MR image segmentation using deformable models,” in Proc. IEEE Conf. Computers in Cardiology, pp. 747–750, 1993.
  33. H. Delingette, “Adaptive and deformable models based on simplex meshes,” in Proc. IEEE Workshop on Motion of Non-Rigid and Articulated Objects, pp. 152–157, 1994.
  34. S. Kumar and D. Goldgof, “Automatic tracking of SPAMM grid and the estimation of deformation parameters from cardiac MR images,” IEEE Trans. Med. Imag., vol. 13, pp. 122–132, 1994.
  35. D. Geiger, A. Gupta, L. A. Costa, and J. Vlontzos, “Dynamic programming for de-tecting, tracking, and matching deformable contours,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 17, pp. 294–402, 1995.
  36. S. Lobregt and M. A. Viergever, “A discrete dynamic contour model,” IEEE Trans. Med. Imag., vol. 14, pp. 12–24, 1995.
  37. C. Nastar and N. Ayache, “Frequency-based nonrigid motion analysis: application to four dimensional medical images,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 18, pp. 1067–1079, 1996.
  38. R. Durikovic, K. Kaneda, and H. Yamashita, “Dynamic contour: a texture approach and contour operations,” The Visual Computer, vol. 11, pp. 277–289, 1995.
  39. T. McInerney and D. Terzopoulos, “Topologically adaptable snakes,” in Proc. 5th Int’l Conf. Comp. Vis., pp. 840–845, 1995
  40. B. B. Kimia, Conservation Laws and a Theory of Shape. Ph.D. thesis, McGill Centre for Intelligent Machines, McGill University, Montreal, Canada, 1990.
  41. M. A. Grayson, “Shortening embedded curves,” Annals of Mathematics, vol. 129, pp. 71–111, 1989.
  42. J. A. Sethian, “Curvature and evolution of fronts,” Commun. Math. Phys., vol. 101, pp. 487–499, 1985.
  43. J. A. Sethian, “A review of recent numerical algorithms for hypersurfaces moving with curvature dependent speed,” J. Differential Geometry, vol. 31, pp. 131–161, 1989.
  44. G. Sapiro, “Geometric partial differential equations in image analysis: past, present, and future,” in Proc. IEEE Int’l Conf. Imag. Proc., vol. 3, pp. 1–4, 1995.
  45. D. Adalsteinsson and J. A. Sethian, “The fast construction of extension velocities in level set methods,” J. Computational Physics, vol. 148, pp. 2–22, 1999
  46. J. A. Sethian, An Analysis of Flame Propagation, Ph.D. thesis, Dept. of Mathematics, University of California, Berkeley, CA, 1982.
  47. L. H. Staib and J. S. Duncan, “Boundary finding with parametrically deformable models,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 14, no. 11, pp. 1061–1075, 1992.
  48. K. Delibasis, P. E. Undrill, and G. G. Cameron, “Designing Fourier descriptor-based geometric models for object interpretation in medical images using genetic algorithms,” Comp. Vis. Imag. Under., vol. 66, pp. 286–300, 1997.
  49. A. Pentland and B. Horowitz, “Recovery of nonrigid motion and structure,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 13, pp. 730–742, 1991.
  50. K. H. Huebner, E. A. Thornton, and T. G. Byrom, The Finite Element Method for Engineers. New York: John Wiley & Sons, 3rd ed., 1994.
  51. E. Bardinet, L. D. Cohen, and N. Ayache, “A parametric deformable model to fit unstructured 3D data,” Comp. Vis. Imag. Under., vol. 71, pp. 39–54, 1998.
  52. T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam, “Use of active shape models for locating structures in medical images,” Imag. Vis. Computing J., vol. 12, no. 6, pp. 355– 366, 1994.
  53. T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active shape models – their training and application,” Comp. Vis. Imag. Under., vol. 61, no. 1, pp. 38–59, 1995.
  54. J. C. Gower, “Generalized Procrustes analysis,” Psychometrika, vol. 40, pp. 33–51, 1975.
  55. N. Duta and M. Sonka, “Segmentation and interpretation of MR brain images: an improved active shape model,” IEEE Trans. Med. Imag., vol. 17, pp. 1049–1062, 1998.
  56. Y. Wang and L. H. Staib, “Boundary finding with correspondence using statistical shape models,” in Proc. IEEE Conf. Comp. Vis. Patt. Recog., pp. 338–345, 1998
  57. H. H. S. Ip and D. Shen, “An affine-invariant active contour model (AI-snake) for model-based segmentation,” Imag. Vis. Computing J., vol. 16, pp. 135–146, 1998.
  58. Y. Guo and B. C. Vemuri, “Hybrid geometric active models for shape recovery in medical images,” in Proc. Information Processing in Medical Imaging (IPMI’99), pp. 112–125, 1999.
  59. D. Fritsch, S. Pizer, L. Yu, V. Johnson, and E. Chaney, “Segmentation of medical im-age objects using deformable shape loci,” in Proc. Information Processing in Medical Imaging (IPMI’97), pp. 127–140, 1997.
  60. Chenyang Xu, D. L. Pham, J. L. Prince, “Image Segmentation using Deformable Models”.
  61. Scott. Acton, Nilanjan Ray, “Biomedical Image Analysis: Segmentation”, Synthesis Lectures on Image, Video and Multimedia Processing, #9, Morgan & Claypool Publishers.
  62. C. Xu, D. L. Pham, and J. L. Prince, "Medical Image Segmentation Using Deformable Models," Handbook of Medical Imaging, Volume 2: Medical Image Processing and Analysis, pp. 129-174, edited by J.M. Fitzpatrick and M. Sonka, SPIE Press, May 20.
Index Terms

Computer Science
Information Sciences

Keywords

Deformable models medical image segmentation active contours level sets GVF