We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Implementation of on Chip Data Bus Using Pre Emphasis Signaling

Published on February 2012 by Pallavi Dedge, S.C. Badwaik
Optimization and On-chip Communication
Foundation of Computer Science USA
OOC - Number 1
February 2012
Authors: Pallavi Dedge, S.C. Badwaik
19464ea3-5770-4ee2-a4b6-9e7da3e9b57d

Pallavi Dedge, S.C. Badwaik . Implementation of on Chip Data Bus Using Pre Emphasis Signaling. Optimization and On-chip Communication. OOC, 1 (February 2012), 32-39.

@article{
author = { Pallavi Dedge, S.C. Badwaik },
title = { Implementation of on Chip Data Bus Using Pre Emphasis Signaling },
journal = { Optimization and On-chip Communication },
issue_date = { February 2012 },
volume = { OOC },
number = { 1 },
month = { February },
year = { 2012 },
issn = 0975-8887,
pages = { 32-39 },
numpages = 8,
url = { /specialissues/ooc/number1/5469-1007/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Special Issue Article
%1 Optimization and On-chip Communication
%A Pallavi Dedge
%A S.C. Badwaik
%T Implementation of on Chip Data Bus Using Pre Emphasis Signaling
%J Optimization and On-chip Communication
%@ 0975-8887
%V OOC
%N 1
%P 32-39
%D 2012
%I International Journal of Computer Applications
Abstract

This work describes a differential current-mode bus architecture based on driver pre-emphasis for on-chip global interconnects that achieves high-data rates while reducing bus power dissipation and improving signal delay latency. The 16-b bus core fabricated in 0.25- ? m complementary metal–oxide–semi- conductor (CMOS) technology attains an aggregate signaling data rate of 64 Gb/s over 5–10-mm-long lossy interconnects. With a supply of 2.5 V, 25.5–48.7-mW power dissipation

References
  1. H. Bakoglu, “Circuits,” in Interconnections and Packaging for VLSI,1st ed. Reading, MA: Addison-Wesley, 1990.
  2. P. Larsson-Edefors, “Investigation on maximal throughput of a CMOS repeater chain,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.,vol. 47, no. 4, pp. 602–606, Apr. 2000
  3. R. Chang, N. Talwalkar, C. Yue, and S. Wong, “Near speed-of-ling signaling over on-chip electrical interconnects,” IEEE J. Solid-State Circuits, vol. 38, no. 5, pp. 834–838, May 2003.
  4. P. Jose and K. L. Shepard, “Distributed loss compensation for lowlatency on-chip interconnects,” in IEEE ISSCC Dig. Tech. Papers, Feb.2006, vol. 21.7, pp. 1558–156
  5. E. Prete, D. Scheideler, and A. Sanders, “A 100 mW 9.6 Gb/s transceiver in 90 nm CMOS for next-generation memory interfaces,”in IEEE ISSCC Dig. Tech. Papers, , Feb. 2006, vol. 4.5, pp.253–262.
  6. R. Bashirullah, W. Liu, R. Cavin, III, and D. Edwards, “A 16 Gb/s adaptive banwidth on-chip bus based on hybrid current/voltage mode signaling,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 461–473,Feb. 2006.
  7. N. Tzartzanis and W. W. Walker, “Differential current-mode sensingfor ef?cient on-chip global signaling,” IEEE J. Solid-State Circuits, vol.40, no. 11, pp. 2141–2147, Nov.2005.
  8. D. Schinkel, E. Mensink, E. A. M. Klumperink, E. van Tuijl, and B.Nauta, “A 3-Gb/s/ch transceiver for 10-mm uninterrupted RC-limited on-chip interconnects,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp.297–306, Jan. 2006.
  9. L. Zhang, J. Wilson, R. Bashirullah, L. Luo, J. Xu, and P. Franzon, “A 32 Gb/s on-chip bus with driver pre-emphasis signaling,” in Proc. IEEE Custom Integr. Circuits Conf., Sep. 2006, vol. P.16, pp. 265–268.
  10. W. Dally and J. Poulton, Digital Systems Engineering.Cambridge,U.K.:CambridgeUniv.Press, 1997.
  11. T. Sakurai, “Closed-form expressions for interconnection delay, coupling,and crosstalk in VLSI’s,” IEEE Trans. Electron Devices, vol. 40,no. 1, pp. 118–124, Jan. 1993.
  12. E. Seevinck, P. van Beers, and H. Ontrop, “Current-mode techniques for high-speed VLSI circuits with application to current sense ampli?er for CMOS SRAM’s,” IEEE J. Solid-State Circuits, vol. 26, no. 4, pp. 525–536, Apr. 1991.
  13. L. Zhang, J. Wilson, R. Bashirullah, and P. Franzon, “Differential current-mode signaling for robust and power ef?cient on-chip global interconnects,”Electr. Perform. Electron. Packag., pp. 315–318, Oct. 2005.
  14. B. Nikolic, V. Stojanovic, V. G. Oklobdzija, W. Jia, J. Chiu, and M.Leung,“Improved sense-ampli?er-based ?ip-?op: Design and measurements,”IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 876–884,Jun. 2000.
  15. R. Ho, K. Mai, and M. Horowitz, “Ef?cient on-chip global interconnects,” in Proc. Symp. Very Large Scale Integr. Circuits, Jun. 2003, pp. 271–274.
  16. K. Banerjee and A. Mehrotra, “A power-optimal repeater insertion methodology for global interconnects in nanometer designs,” IEEE Trans. Electron Devices, vol. 49, no. 11, pp. 2001–2007, Nov. 2002.
  17. Y. Ismail, E. Friedman, and J. Neves, “Figureures of merit to characterize the importance of on-chip inductance,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 7, no. 6, pp. 442–449, Dec. 199
  18. A. Deutsch, P. W. Coteus, G. V. Kopcsay, H. H. Smith, C. W. Surovic, B. L. Krauter, D. C. Edelstein, and P. J. Restle, “On-chip wiring design challenges for gigahertz operation,” Proc. IEEE, vol. 89, no. 4, pp. 529–555, Apr. 2001
  19. D. Burger and T. M. Austin, The SimpleScalar Tool Set, Version 2.0,Univ. Wisconsin, Madison, WI, Tech. Rep. CS-TR-97-1342, Jun. 1997.
  20. J. M. Rabaey, Digital Integrated Circuits: A Design Perspective. Englewood
  21. Cliffs, NJ: Prentice-Hall, 1996.
  22. United State Patent (Number:7557630,b2,7 july 2009) Name: sense amplifier based flip flop for reducing output delay and method thereof.
Index Terms

Computer Science
Information Sciences

Keywords

interconnect power dessiapation delay crosstalk noise