International Conference on Electronics, Communication and Information systems |
Foundation of Computer Science USA |
ICECI - Number 1 |
November 2012 |
Authors: Hema Rajini.n, Narmatha.t, Bhavani.r |
3e7b506d-e565-40c2-8563-ad5cca0c55f9 |
Hema Rajini.n, Narmatha.t, Bhavani.r . Automatic Classification of MR Brain Tumor Images using Decision Tree. International Conference on Electronics, Communication and Information systems. ICECI, 1 (November 2012), 10-13.
A tumor classification system has been designed and developed. It is used to classify five different types of tumors such as glioblastoma multiforme, astrocytoma, metastatic, glioma and pituitary macro. The magnetic resonance feature images used for the tumor classification consist of T1-weighted images with contrast for each axial slice through the head. The magnetic resonance imaging has become a widely used method of high quality medical imaging, especially in brain imaging where the soft-tissue contrast and non invasiveness is a clear advantage. The proposed method has three stages. They are pre-processing, feature extraction and classification. In the first stage, the noise is removed using a wiener filter. In the second stage, six texture features are extracted using gray level co-occurrence matrix. The features extracted are angular second moment, contrast, inverse difference moment, entrophy, correlation and variance. Finally, a decision tree classifier is used to classify the type of tumor image. The extracted features are compared with the stored features in the knowledge base to classify the type of tumors. Thus, the proposed system has been evaluated on a dataset of 21 patients. Then the system was found efficient in classification with a success of 98%.