CFP last date
20 January 2025
Reseach Article

An Improved Iterative Watershed and Morphological Transformation Techniques for Segmentation of Microarray Images

Published on None 2010 by Dr.G.P.S.Varma, Dr A Govardhan, A.Sri Nagesh
Computer Aided Soft Computing Techniques for Imaging and Biomedical Applications
Foundation of Computer Science USA
CASCT - Number 2
None 2010
Authors: Dr.G.P.S.Varma, Dr A Govardhan, A.Sri Nagesh
f445c331-85dc-4b37-bb10-b96c188d186c

Dr.G.P.S.Varma, Dr A Govardhan, A.Sri Nagesh . An Improved Iterative Watershed and Morphological Transformation Techniques for Segmentation of Microarray Images. Computer Aided Soft Computing Techniques for Imaging and Biomedical Applications. CASCT, 2 (None 2010), 77-87.

@article{
author = { Dr.G.P.S.Varma, Dr A Govardhan, A.Sri Nagesh },
title = { An Improved Iterative Watershed and Morphological Transformation Techniques for Segmentation of Microarray Images },
journal = { Computer Aided Soft Computing Techniques for Imaging and Biomedical Applications },
issue_date = { None 2010 },
volume = { CASCT },
number = { 2 },
month = { None },
year = { 2010 },
issn = 0975-8887,
pages = { 77-87 },
numpages = 11,
url = { /specialissues/casct/number2/1002-37/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Special Issue Article
%1 Computer Aided Soft Computing Techniques for Imaging and Biomedical Applications
%A Dr.G.P.S.Varma
%A Dr A Govardhan
%A A.Sri Nagesh
%T An Improved Iterative Watershed and Morphological Transformation Techniques for Segmentation of Microarray Images
%J Computer Aided Soft Computing Techniques for Imaging and Biomedical Applications
%@ 0975-8887
%V CASCT
%N 2
%P 77-87
%D 2010
%I International Journal of Computer Applications
Abstract

Microarrays are novel and dominant techniques that are being made use in the analysis of the expression level of DNA, with pharmacology, medical diagnosis, environmental engineering, and biological sciences being its current applications. Studies on microarray have shown that image processing techniques can considerably influence the precision of microarray data. A crucial issue identified in gene microarray data analysis is to perform accurate quantification of spot shapes and intensities of microarray image. Segmentation methods that have been employed in microarray analysis are a vital source of variability in microarray data that directly affects precision and the identification of differentially expressed genes. The effect of different segmentation methods on the variability of data derived from microarray images has been overlooked. This article proposes a methodology to investigate the accuracy of spot segmentation of a microarray image, using morphological image analysis techniques, watershed algorithm and iterative watershed algorithm. The input to the methodology is a microarray image, which is then subjected to spotted microarray image preprocessing and gridding. Subsequently, the resulting microarray sub grid is segmented using morphological operators, watershed algorithm and iterative watershed algorithm. Based on the precision of segmentation and its intensity profile, a formal investigation of the three segmentation algorithms employed (morphological operators, watershed algorithm and iterative watershed algorithm) is performed. The experimental results demonstrate the segmentation effectiveness of the proposed methodology and also the better of the three segmentation algorithms employed for segmentation.

References
  1. Luis Rueda and Li Qin, "An Unsupervised Learning Scheme for DNA Microarray Image Spot Detection", Proc. of the First International Conference on Complex Medical Engineering, Takamatsu, Japan, pp. 996-1000, 2005.
  2. A. Loury and L. Bodrossy, "Highly parallel microbial diagnostics using oligonucleotide microarrays", Clinica Chimical Acta, Vol. 363, pp. 106-119, 2006.
  3. G. López-Campos, L. Garcia-Albert, F. Martín Sanchez and A., Garcia-Saiz, "Analysis and management of HIV peptide microarray experiments", Methods of Information in Medicine, Vol. 45, pp. 158-162, 2006.
  4. G. López-Campos, M. Coiras, J.P. Sánchez-Merino, M.R. López-Huertas, I. Spiteri, F. Martín-Sanchez, P. Pérez-Breña, "Oligonucleotide microarray design for detection and serotyping of human respiratory adenoviruses by using a virtual amplicon retrieval software", Journal of Virological Methods, vol. 145, pp. 127-136, 2007.
  5. S. Draghici, "Data Analysis Tools for DNA Microarrays", Chapman & Hall/CRC, 2003.
  6. M. Schena, "Microarray Analysis", John Wiley & Sons, 2002.
  7. Lopez-Campos G, Lopez Alonso V, Martin-Sanchez F., "Addressing the Biomedical Informatics Needs of a Microarray Laboratory in a Clinical Microbiology Context", Stud Health Technol Inform., S.K. Andersen et al. (Eds.), IOS Press, Vol. 136, pp. 45-50, 2008.
  8. Antonis Daskalakis, Dionisis Cavouras, Panagiotis Bougioukos, Spiros Kostopoulos, Pantelis Georgiadis, Ioannis Kalatzis, George Kagadis, and George Nikiforidis, "Effective Quantification of Gene Expression Levels in Microarray Images Using a Spot-Adaptive Compound Clustering-Enhancement-Segmentation Scheme", O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, Vol. LNCS 4707, Part III, pp. 555 – 565, 2007.
  9. Nikolaos Giannakeas, Petros S. Karvelis, and Dimitrios I. Fotiadis, "A Classification-Based Segmentation of cDNA Microarray Images using Support Vector Machines", 30th Annual International IEEE EMBS Conference Vancouver, British Columbia, Canada, pp. 875-878, August 20-24, 2008.
  10. Hedge, P., QI, R., Abernathy, K., Gay, C., Dharap, S., Gaspard, R., Earle-Hugues, J., Snesrud, E., Lee, N. and Quackenbush, J., "A concise guide to cDNA microarray analysis", Biotechniques, Vol. 29, pp. 548–562, 2000.
  11. Raphael Gottardo, Julian Besag, Matthew Stephens, Alejandro Murua, "Probabilistic segmentation and intensity estimation for microarray images", Biostatistics, Vol. 7, No. 1, pp. 85–99, 2006.
  12. M. Schena, D. Shalon, R.W. Davis, and P.O. Brown, “Quantitative motoring of gene expression patterns with a complementary DNA microarray,” Science, vol. 270, pp. 467-470, 1995.
  13. L. S. Davis, “A survey of edge detection techniques”, Comput. Graphics and Image Processing, vol. 4, pp. 179-205, 1975.
  14. S. W. Zucker, “Region growing: Childhood and adolescence”, Comput. Graphics and Image Processing, vol. 5, pp. 382-399, 1976.
  15. S. Beucher, “The watershed transformation applied to image segmentation”, 10th Conf. on Signal and Image Processing in Microscopy and Microanalysis, Cambridge, UK, 1991.
  16. Yee Hwa Yang, Michael Buckley, Sandrine Dudoit and Terry Speed, “Comparison of methods for image analysis on cDNA microarray data”, University of California, Berkeley, Technical Report # 584, 2002.
  17. M. Eisen, "ScanAlyze User's Manual", M. Eisen, 1999.
  18. Axon Instruments, "Genepix 4000A: User's Manual", Axon Instruments Inc., 1999.
  19. GSI Lumonics, "QuantArray Analysis Software: Operator's Manual", 1999.
  20. J. Buhler, T. Ideker, and D. Haynor, "Dapple: Improved Techniques for Finding Sports on DNA Microarrays", Technical Report UWTR 2000-08-05, University of Washington, 2000.
  21. Y. Yang, M. Buckley, S. Dudoit, and T. Speed, "Comparison of Methods for Image Analysis on cDNA Microarray Data", Journal of Computational and Graphical Statistics, Vol. 11, pp. 108-136, 2002.
  22. Y. Chen, E. Dougherty, and M. Bittner, "Ratio-based Decision and the Quantitative Analysis of cDNA Microarray Images", Journal of Biomedical Optics, Vol. 2, pp. 364-374, 1997.
  23. Roberto Hirata, Jr., Junior Barrera, Ronaldo F. Hashimoto, Daniel O. Dantas and Gustavo H. Esteves, "Segmentation of Microarray Images by Mathematical Morphology", Real-Time Imaging, Vol. 8, No. 6, pp. 491-505, December 2002.
  24. Antonio P. G. Damiance, Jr., Liang Zhao, Andre C. P. L. F. Carvalho, "A dynamical model with adaptive pixel moving for microarray images segmentation", Real-Time Imaging, Special issue on imaging in bioinformatics: Part III, Vol. 10, No. 4, pp. 189 - 195, August 2004.
  25. Jesus Angulo and Jean Serra, "Automatic analysis of DNA microarray images using mathematical morphology", Bioinformatics, Vol. 19, No. 5, pp.553-562, 2003.
  26. Kashif I.Siddiqui, Alfred O. Hero and Matheen M. Siddiqui, "Mathematical Morphology applied to Spot Segmentation and Quantification of Gene Microarray Images", In: proceedings of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, vol.1, pp.926 - 930, 3-6 November 2002.
  27. Jesus Angulo, "Polar modelling and segmentation of genomic microarray spots using mathematical morphology", Image Analysis and Stereology, Vol. 27, No.2, pp. 107-124, June, 2008.
  28. Yu Wang, Marc Q. Ma, Kai Zhang, Frank Y. Shih, "A hierarchical refinement algorithm for fully automatic gridding in spotted DNA microarray image processing", Information Sciences: an International Journal, Vol. 177, No. 4, pp. 1123-1135, February 2007.
  29. Saeed V. Vaseghi, "Advanced signal processing and digital noise reduction (Paperback)", John Wiley & Sons Inc, pp. 416, July 1996.
  30. Dr. Rich Baraniak, Ramesh Neelamani, "Weiner Filtering", from http://www.owlnet.rice.edu/~elec539/Projects99/BACH/proj2/wiener.html
  31. D. Gnanadurai, and V. Sadasivam, “An Efficient Adaptive Thresholding Technique for Wavelet Based Image Denoising”, International Journal of Signal Processing, Vol. 2, No. 2, pp. 114-119, 2006.
  32. Yahia S. Halabi, Zaid SA”SA, Faris Hamdan, Khaled Haj Yousef, "Modeling Adaptive Degraded Document Image Binarization and Optical Character System", European Journal of Scientific Research, Vol. 28, No.1, pp.14-32, 2009.
  33. M. Sezgin and B. Sankur, "Survey over image thresholding techniques and quantitative performance evaluation", Journal of Electronic Imaging, Vol. 13, No. 1, pp. 146–165, 2004.
  34. N. Otsu, "A threshold selection method from gray-level histograms", IEEE Trans. Sys., Man., Cyber., Vol. 9, pp. 62 – 66, 1979.
  35. H. J. A. M. Heijmans, "Morphological Image Operators”, Boston: Academic Press, 1994.
  36. Dougherty, E. R., "An Introduction to Morphological Image Processing”, SPIE Press, Bellingham, 1992.
  37. J. Goutsias and S. Batman, “Morphological Methods for Biomedical Image Analysis”, Handbook of Medical Imaging, SPIE Optical Engineering Press, Ed., M. Sonka and J. M. Fitzpatrick, Vol. 2, pp. 175-272, 2000.
  38. Laurent Najman and Michel Couprie, "Watershed algorithms and contrast preservation", Lecture Notes in Computer Science, Vol. 2886, pp.62-71, 2003.
  39. Meyer, F., "Topographic distance and watershed lines", Signal Processing, Special issue on Mathematical Morphology, Vol. 38, pp. 113-126, 1994.
  40. “Microarray Images”, from http://llmpp.nih.gov/lymphoma/data/rawdata/
  41. Smith, J.O., "Mathematics of the Discrete Fourier Transform (DFT) with Audio Applications", Second Edition, from http://ccrma-www.stanford.edu/~jos/st/Cross_Correlation.html
  42. Brown C.S., Goodwin, P.C. and Sorger, P.K., “Image metrics in the statistical analysis of DNA microarray data”, Proc. Natl Acad. Sci. USA, Vol. 98, No. 16, pp. 8944–8949, 2001.
  43. Li Chen, Min Jiang, and JianXun Chen, "Image Segmentation Using Iterative Watersheding Plus Ridge Detection", 2009 IEEE International Conference on Image Processing, iro, Egypt • Saturday, November 7 - Tuesday, November 10, 2009.
Index Terms

Computer Science
Information Sciences

Keywords

Bioinformatics Microarray Genes Spot Segmentation Threshold Fast Circular Cross Correlation Morphological Operator Morphological Filtering Watershed Algorithm Iterative Watershed Algorithm