We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Novel Image Superpixel Segmentation Approach using LRW Algorithm

Published on May 2014 by Arpita G.chakkarwar, M.v.sarode
National Level Technical Conference X-PLORE 2014
Foundation of Computer Science USA
XPLORE2014 - Number 1
May 2014
Authors: Arpita G.chakkarwar, M.v.sarode
ce34cc67-3188-4a54-8d00-3042d8d048c7

Arpita G.chakkarwar, M.v.sarode . Novel Image Superpixel Segmentation Approach using LRW Algorithm. National Level Technical Conference X-PLORE 2014. XPLORE2014, 1 (May 2014), 23-26.

@article{
author = { Arpita G.chakkarwar, M.v.sarode },
title = { Novel Image Superpixel Segmentation Approach using LRW Algorithm },
journal = { National Level Technical Conference X-PLORE 2014 },
issue_date = { May 2014 },
volume = { XPLORE2014 },
number = { 1 },
month = { May },
year = { 2014 },
issn = 0975-8887,
pages = { 23-26 },
numpages = 4,
url = { /proceedings/xplore2014/number1/16168-1418/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 National Level Technical Conference X-PLORE 2014
%A Arpita G.chakkarwar
%A M.v.sarode
%T Novel Image Superpixel Segmentation Approach using LRW Algorithm
%J National Level Technical Conference X-PLORE 2014
%@ 0975-8887
%V XPLORE2014
%N 1
%P 23-26
%D 2014
%I International Journal of Computer Applications
Abstract

We present a novel image superpixel segmentation approach using the proposed lazy random walk (LRW) algorithm in this paper. Our method begins with initializing the seed positions and runs the LRW algorithm on the input image to obtain the probabilities of each pixel. Then, the boundaries of initial superpixels are obtained according to the probabilities and the commute time. The initial superpixels are iteratively optimized by the new energy function, which is defined on the commute time and the texture measurement.

References
  1. F. R. K. Chung, Spectral Graph Theory. Providence, RI, USA: Amer. Math. Soc. , 1997.
  2. D. Martin, C. Fowlkes, D. Tal, and J. Malik, "A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics," in Proc. 8th IEEE ICCV, Vancouver, BC, Canada, Jul. 2001, pp. 416-423.
  3. D. Aldous and J. Fill. (2002). Reversible Markov Chains and Random Walks on Graphs [Online]. Available:http://statwww. berkeley. edu/users/aldous/RWG/book. html
  4. A. Y. Ng, M. I. Jordan, and Y. Weiss, "On spectral clustering: Analysis and an algorithm," in Proc. NIPS, 2002, pp. 849-856.
  5. D. Comaniciu and P. Meer, "Mean shift: A robustapproach toward feature space analysis," IEEE Trans. Pattern Anal. Mach. Intell. , vol. 24, no. 5, pp. 603-619, May 2002.
  6. T. Ojala, M. Pietikäinen, and T. Mäenpää, "Multiresolution gray scale and rotation invariant texture analysis with local binary patterns," IEEE Trans. Pattern Anal. Mach. Intell. , vol. 24, no. 7, pp. 971-987, Jul. 2002.
  7. X. Ren and J. Malik, "Learning a classification model for segmentation," in Proc. 9th IEEE ICCV, Oct. 2003, pp. 10-17
  8. J. Ham, D. D. Lee, S. Mika, and B. Sch¨olkopf, "A kernel view of the dimensionality reduction of manifolds," in Proc. 21st ICML, 2004, pp. 1-9.
  9. D. Zhou and B. Sch¨olkopf, "Learning from labeled and unlabeled data using random walks," in Proc. DAGM, 2004, pp. 237-244.
  10. G. Mori, X. Ren, A. A. Efros, and J. Malik, "Recovering human body configurations: Combining segmentation and recognition," in Proc. IEEE CVPR, Jul. 2004, pp. 326-333.
  11. P. Felzenszwalb and D. Huttenlocher, "Efficient graphbased image segmentation," Int. J. Comput. Vis. , vol. 59, no. 2, pp. 167-181, 2004.
  12. L. Grady, "Random walks for image segmentation," IEEE Trans. Pattern Anal. Mach Intell. , vol. 28, no. 11, pp. 1768-1783, Nov. 2006.
  13. L. Grady and E. Schwartz, "Isoperimetric graph partitioning for image segmentation," IEEE Trans. Pattern Anal. Mach. Intell. , vol. 28, no. 3, pp. 469-475, Mar. 2006.
  14. A. K. Sinop and L. Grady, "A seeded image segmentation framework unifying graph cuts and random walks which yields a new algorithm," in Proc. IEEE ICCV, Oct. 2007, pp. 1-8.
  15. X. Bai and G. Sapiro, "A geodesic framework for fast interactive image and video segmentation and matting," in Proc. IEEE 11th ICCV, Oct. 2007, pp. 1-8.
  16. A. Moore, S. Prince, J. Warrell, U. Mohammed, and G. Jones, "Superpixel lattices," in Proc. IEEE CVPR, Jun. 2008, pp. 1-8.
  17. A. Levinshtein, A. Stere, K. Kutulakos, D. Fleet, S. Dickinson, and K. Siddiqi, "Turbopixels: Fast superpixels using geometric flows," IEEE Trans. Pattern Anal. Mach. Intell. , vol. 31, no. 12, pp. 2290-2297, Dec. 2009.
  18. D. S. Watkins, Fundamentals of Matrix Computations, 3rd ed. New York, NY, USA: Wiley, 2010.
  19. O. Veksler, Y. Boykov, and P. Mehrani, "Superpixels and supervoxels in an energy optimization framework," in Proc. ECCV, 2010, pp. 211-224.
  20. A. Moore, S. Prince, and J. Warrel, "Lattice cut—Constructing superpixels using layer constraints," in Proc. IEEE CVPR, Jun. 2010, pp. 2117-2124.
  21. s R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fsua, and S. Sässtrunks, "SLIC superpixels," EPFL, Lausanne,Switzerland, Tech. Rep. 149300, 2010.
Index Terms

Computer Science
Information Sciences

Keywords

Lazy Random Walk Commute Time Optimization Superpixel Texture.