CFP last date
20 January 2025
Reseach Article

Effect of Prandtl Number in Free convective MHD flow past a low - heat - resistance sheet in Porous media

Published on May 2012 by L. M. Tiwari, S. Kapoor, S. Agarwal, V. Dabral
National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing 2011
Foundation of Computer Science USA
RTMC - Number 6
May 2012
Authors: L. M. Tiwari, S. Kapoor, S. Agarwal, V. Dabral
56ed8983-714a-4cf3-873a-611b443820c5

L. M. Tiwari, S. Kapoor, S. Agarwal, V. Dabral . Effect of Prandtl Number in Free convective MHD flow past a low - heat - resistance sheet in Porous media. National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing 2011. RTMC, 6 (May 2012), 26-30.

@article{
author = { L. M. Tiwari, S. Kapoor, S. Agarwal, V. Dabral },
title = { Effect of Prandtl Number in Free convective MHD flow past a low - heat - resistance sheet in Porous media },
journal = { National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing 2011 },
issue_date = { May 2012 },
volume = { RTMC },
number = { 6 },
month = { May },
year = { 2012 },
issn = 0975-8887,
pages = { 26-30 },
numpages = 5,
url = { /proceedings/rtmc/number6/6663-1046/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing 2011
%A L. M. Tiwari
%A S. Kapoor
%A S. Agarwal
%A V. Dabral
%T Effect of Prandtl Number in Free convective MHD flow past a low - heat - resistance sheet in Porous media
%J National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing 2011
%@ 0975-8887
%V RTMC
%N 6
%P 26-30
%D 2012
%I International Journal of Computer Applications
Abstract

The numerical study of the boundary layer equation is presented in this paper, In the present paper our motive is to understand the Effect of prandtl number for MHD free convective fluid flow past a low heat resistance sheet in porous medium , which is physically modeled as a boundary layer flow in porous media. The governing equations are taken in term of boundary layer equation and then we used similarity transformation to convert this system of PDE into system of Coupled Ordinary differential equation. The resultant coupled system is solved by using Finite difference method. .

References
  1. . Chamkha A. J. , Hydromagnetic Flow and Heat Transfer over a Non-Isothermal Power-Law Stretched Surface with Heat Generation, Int. J. Fluid Mechanics Research, 28 (2001) 463-483.
  2. . Carragher P. , Crane L. J. , Heat transfer on a continuous stretching sheet, ZAMM 62 (1982) 564– 565.
  3. . Chiam T. C. , Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet, Acta Mech. 129 (1998) 63–72.
  4. . Kumari M. , Takhar H. S. and NathG. , Analytical solution of the boundary layer equations over a stretching sheet with mass transfer, Proc. National Academy of Science, India, 69(A) (1999) 355-372.
  5. . Chakrabarti A. , Gupta A. S. , Hydromagnetic flow and heat transfer over a stretching sheet. Q. Appl. Math 37 (1979) 73.
  6. . Kumari M. , Takhar H. S. and Nath G. , MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux, Wärme und Stoffübertragung. 25 (1990) 331-336.
  7. Sparrow, E. M. and Gregg, J. L. , 1958. "Similar Solutions for Laminar Free Convection from a Nonisothermal Vertical Plate", Trans. ASME, Journal of Heat Transfer 80, pp. 379- 387.
  8. Deswita, L. , Nazar, R. , Ahmad, R. , Ishak, A. and Pop, I. , 2009. "Similarity Solutions of Free Convection Boundary Layer Flow on a Horizontal Plate with Variable Wall Temperature", European Journal of Scientific Research 27, pp. 188 – 198.
  9. Awang Kechil, S. and Hashim, I. , 2007. "Non- Perturbative Solution of Free-Convective Boundary- Layer Equation by Adomian Decomposition Method", Physics Letters A 363, pp. 110 – 114.
  10. Ghotbi, A. R. , Bararnia, H. , Domairry, G. and Barari, A. , 2009. "Investigation of a Powerful Analytical Method into Natural Convection Boundary Layer Flow", Communications in Nonlinear Science and Numerical Simulation 14, pp. 2222 – 2228.
  11. Awang Kechil, S. and Hashim, I. , 2007. "Non- Perturbative Solution of Free-Convective Boundary- Layer Equation by Adomian Decomposition Method", Physics Letters A 363, pp. 110 – 114.
  12. Ishak, A. , Nazar, R. , and Pop, I. , 2006. "Unsteady Mixed Convection Boundary Layer Flow Due to a Stretching Vertical Surface", The Arabian Journal for Science and Engineering 31, pp. 165 – 182.
  13. Ishak, A. , Nazar, R. , and Pop, I. , 2007. "Magnetohydrodynamic Stagnation Point Flow Towards a Stretching Vertical Sheet in a Micropolar Fluid", Magnetohydrodynamics 43, pp. 83– 97.
  14. Ahmad, S. , Arifin, N. M. , Nazar, R. and Pop, I. , 2008. "Free Convection Boundary Layer Flow over Cylinders of Elliptic Cross Section with Constant Surface Heat Flux", European Journal of Scientific Research 23, pp. 614 – 626.
  15. Fadzilah Md Ali,Roslinda Nazar,Norihan Md Arifin, (2009),"Numerical Investigation of Free Convective Boundary Layer", Euro journals Publishing Issue 5,p. p13-19
  16. Smith G. ,D. Numerical solution of differential equation: Finite difference method. , Oxford university press 1986
  17. S. Kapoor. , S. Pipal. , R. Gupta. ,Influence of Prandtl Number in Natural Convective MHD flow past a low -heat -resistance sheet in viscous media International Conference on "Emerging Trends in Mechanical Engineering (ICETME 2011)". Published in Conference Proceeding pp. 843-848.
Index Terms

Computer Science
Information Sciences

Keywords

Adomian Decomposition Method (adm) homotopy Analysis Method (ham)