CFP last date
20 December 2024
Reseach Article

Source Coding with Renyi�s Entropy

Published on December 2013 by Arun Choudhary, Satish Kumar, Arvind Kumar
Recent Trends in Electronics and Communication 2013
Foundation of Computer Science USA
RTEC - Number 1
December 2013
Authors: Arun Choudhary, Satish Kumar, Arvind Kumar
513b41a8-2a80-4e36-8669-a3cd67b24483

Arun Choudhary, Satish Kumar, Arvind Kumar . Source Coding with Renyi�s Entropy. Recent Trends in Electronics and Communication 2013. RTEC, 1 (December 2013), 19-22.

@article{
author = { Arun Choudhary, Satish Kumar, Arvind Kumar },
title = { Source Coding with Renyi�s Entropy },
journal = { Recent Trends in Electronics and Communication 2013 },
issue_date = { December 2013 },
volume = { RTEC },
number = { 1 },
month = { December },
year = { 2013 },
issn = 0975-8887,
pages = { 19-22 },
numpages = 4,
url = { /proceedings/rtec/number1/14773-1318/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 Recent Trends in Electronics and Communication 2013
%A Arun Choudhary
%A Satish Kumar
%A Arvind Kumar
%T Source Coding with Renyi�s Entropy
%J Recent Trends in Electronics and Communication 2013
%@ 0975-8887
%V RTEC
%N 1
%P 19-22
%D 2013
%I International Journal of Computer Applications
Abstract

A new measure called average code word length of order is defined and its relationship with Renyi's entropy of order is discussed. Using some coding theorems are proved under the condition

References
  1. Aczel, J. and Daroczy, Z. (1963). Uber Verallgemeinerte quasilineare mittelwerte, die mit Gewichtsfunktionen gebildet sind, Publ. Math. Debrecen, Vol. 10, pp. 171-190.
  2. Aczel, J. and Daroczy, Z. (1975). On measures of information and their characterizations. Mathematics in Science and Engineering, Vol. 115, Academic Press, New York, London.
  3. Campbell, L. L. (1965). A coding theorem and Renyi's entropy, Information and Control, Vol. 8, pp. 423-429.
  4. Ebanks, B. , Sahoo, P. and Sander, W. (1998). Characterizations of information measures, World Scientific Publishing Co. , Inc. , River Edge, NJ.
  5. Feinstein, A. (1956). Foundation of Information Theory, McGraw Hill, New York.
  6. Hooda, D. S. and Bhaker, U. S. (1997). A generalized `useful' information measure and coding theorems, Soochow J. Math. , Vol. 23, pp. 53-62.
  7. Jelinek, F. (1980). Buffer overflow in variable lengths coding of fixed rate sources, IEEE, Vol. 3, pp. 490-501.
  8. Kapur, J. N. (1967). Generalized entropy of order and type , Maths. Seminar, Delhi, Vol. 4, pp. 78-94.
  9. Khan, A. B. , Bhat, B. A. and Pirzada, S. (2005). Some Results on a Generalized Useful Information Measure, Journal of Inequalities in Pure and Applied Mathematics, Vol. 6(4), Art. 117.
  10. Kieffer, J. C. (1979). Variable lengths source coding with a cost depending only on the codeword length, Information and Control, Vol. 41, pp. 136-146.
  11. Longo, G. (1976). A Noiseless Coding Theorem for Sources Having Utilities, Siam J. Appl. Math. , Vol. 30, pp. 739-748.
  12. Renyi, A. (1961). On Measure of entropy and information, Proc. 4th Berkeley Symp. Maths. Stat. Prob. , Vol. 1, pp. 547-561.
  13. Shannon, C. E. (1948). A Mathematical Theory of Communication, Bell System Tech. J. , Vol. 27, pp. 379-423, 623-656.
  14. Singh, R. P. , Kumar, R. and Tuteja, R. K. (2003). Application of Hölder's Inequality in Information Theory, Information Sciences, Vol. 152, pp. 145-154.
Index Terms

Computer Science
Information Sciences

Keywords

Codeword Length Optimal Code Length Holder's Inequality And Kraft Inequality.