CFP last date
20 February 2025
Reseach Article

A Multimodal Biometric System using Frequency based Features

Published on August 2011 by Hitendra V. Patil, Gokul P. Khaire, Sandeep P. Kholambe
journal_cover_thumbnail
National Technical Symposium on Advancements in Computing Technologies
Foundation of Computer Science USA
NTSACT - Number 1
August 2011
Authors: Hitendra V. Patil, Gokul P. Khaire, Sandeep P. Kholambe

Hitendra V. Patil, Gokul P. Khaire, Sandeep P. Kholambe . A Multimodal Biometric System using Frequency based Features. National Technical Symposium on Advancements in Computing Technologies. NTSACT, 1 (August 2011), 25-30.

@article{
author = { Hitendra V. Patil, Gokul P. Khaire, Sandeep P. Kholambe },
title = { A Multimodal Biometric System using Frequency based Features },
journal = { National Technical Symposium on Advancements in Computing Technologies },
issue_date = { August 2011 },
volume = { NTSACT },
number = { 1 },
month = { August },
year = { 2011 },
issn = 0975-8887,
pages = { 25-30 },
numpages = 6,
url = { /proceedings/ntsact/number1/3181-ntst002/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 National Technical Symposium on Advancements in Computing Technologies
%A Hitendra V. Patil
%A Gokul P. Khaire
%A Sandeep P. Kholambe
%T A Multimodal Biometric System using Frequency based Features
%J National Technical Symposium on Advancements in Computing Technologies
%@ 0975-8887
%V NTSACT
%N 1
%P 25-30
%D 2011
%I International Journal of Computer Applications
Abstract

The basic aim of a biometric identification system is to discriminate automatically between subjects in a reliable and dependable way, according to a specifictarget application. The paper is a state-of-the-art advancement of multibiometrics, offering an innovative perspective on features fusion. In greater detail, a frequency-based approach results in a homogeneous biometric vector, integrating iris and fingerprint data. Successively, a hamming-distance-based matching algorithm deals with the unified homogenous biometric vector.

References
  1. A. Ross and A.Jain, “Information fusion in biometrics,”Pattern Recogn. Lett., vol. 24, pp. 2115–2125, 2003 DOI: 10.1016/S0167– 8655(03)00079-5.
  2. F. Yang and B. Ma, “A new mixed-mode biometrics information fusion based-on fingerprint, hand-geometry and palm-print,” in Proc. 4th Int. IEEE Conf. Image Graph., 2007, pp. 689–693. DOI: 10.1109/ICIG.2007.39.
  3. Cui, J. P. Li, and X. J. Lu, “Study on multi-biometric feature fusion and recognition model,” in Proc. Int. IEEE Conf. Apperceiving Comput. Intell. Anal. (ICACIA), 2008, pp. 66–69. DOI: 10.1109/ICACIA.2008.4769972.
  4. S. K. Dahel and Q. Xiao, “Accuracy performance analysis of multimodal biometrics,” in Proc. IEEE Syst., Man Cybern. Soc., Inf. Assur. Workshop, 2003, pp. 170–173. DOI: 10.1109/ SMCSIA.2003.1232417. A. Ross, K. Nandakumar, and A. K. Jain, Handbook of Multibiometrics. Berlin, Germany: Springer-Verlag. ISBN 978–0-387-22296-7.
  5. UK Biometrics Working Group (BWG). Biometrics Security Concerns. (2009, Nov.). [Online]. Available: www.cesg.gov.uk/policy_technologies/biometrics/ index.shtml, 2003.
  6. S. Prabhakar, A. K. Jain, and J.Wang, “Minutiae verification and classification,” presented at the Dept. Comput. Eng. Sci., Univ. Michigan State, East Lansing, MI, 1998.
  7. V. Conti, C. Militello, S. Vitabile, and F. Sorbello, “A multimodal technique for an embedded fingerprint recognizer in mobile payment systems,”Int. J. Mobile Inf. Syst., vol. 5, no. 2, pp. 105–124, 2009.
  8. N. K. Ratha, R. M. Bolle, V. D. Pandit, and V. Vaish, “Robust fingerprint authentication using local structural similarity,” in Proc. 5th IEEE Workshop Appl. Comput. Vis., Dec. 4–6, 2000, pp. 29–34.
  9. DOI 10.1109/WACV.2000.895399.
  10. Y. Zhu, T. Tan, and Y. Wang, “Biometric personal identification on iris patterns,” in Proc. 15th Int. Conf. Pattern Recogn., 2000, vol. 2, pp. 805– 808.
  11. L. Ma,Y.Wang, andD. Zhang, “Efficient iris recognition by characterizing key local variations,” IEEE Trans. Image Process., vol. 13, no. 6, pp. 739– 750, Jun. 2004.
  12. V. Conti, G. Milici, P. Ribino, S. Vitabile, and F. Sorbello, “Fuzzy fusion in multimodal biometric systems,” in Proc.11th LNAI Int. Conf. Knowl.- Based Intell. Inf. Eng. Syst. (KES 2007/WIRN 2007), Part I LNAI 4692. B. Apolloni et al., Eds. Berlin, Germany: Springer-Verlag, 2010, pp. 108–115.
  13. F. Besbes, H. Trichili, and B. Solaiman, “Multimodal biometric system based on fingerprint identification and Iris recognition,” in Proc. 3rd Int. IEEE Conf. Inf. Commun. Technol.: From Theory to Applications (ICTTA 2008), pp.1–5. DOI: 10.1109/ICTTA.2008.4530129.
Index Terms

Computer Science
Information Sciences

Keywords

Fusion techniques identification systems iris and fingerprint biometry multimodal biometric systems