CFP last date
20 January 2025
Reseach Article

Image Segmentation: Computational Approaches for Medical Images

Published on May 2014 by Rupanka Bhuyan, Samarjeet Borah
National Conference cum Workshop on Bioinformatics and Computational Biology
Foundation of Computer Science USA
NCWBCB - Number 3
May 2014
Authors: Rupanka Bhuyan, Samarjeet Borah
d74f1a63-98ef-4555-b1be-04e34174f269

Rupanka Bhuyan, Samarjeet Borah . Image Segmentation: Computational Approaches for Medical Images. National Conference cum Workshop on Bioinformatics and Computational Biology. NCWBCB, 3 (May 2014), 13-17.

@article{
author = { Rupanka Bhuyan, Samarjeet Borah },
title = { Image Segmentation: Computational Approaches for Medical Images },
journal = { National Conference cum Workshop on Bioinformatics and Computational Biology },
issue_date = { May 2014 },
volume = { NCWBCB },
number = { 3 },
month = { May },
year = { 2014 },
issn = 0975-8887,
pages = { 13-17 },
numpages = 5,
url = { /proceedings/ncwbcb/number3/16522-1424/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 National Conference cum Workshop on Bioinformatics and Computational Biology
%A Rupanka Bhuyan
%A Samarjeet Borah
%T Image Segmentation: Computational Approaches for Medical Images
%J National Conference cum Workshop on Bioinformatics and Computational Biology
%@ 0975-8887
%V NCWBCB
%N 3
%P 13-17
%D 2014
%I International Journal of Computer Applications
Abstract

Image segmentation is a prominent problem of research in the field of computer science and an evolving concept. No perfect solution to this problem has been found till date. This paper presents some of the fundamental concepts in image segmentation and lay special emphasis on images used in the medical domain. Certain commonly found problems which are inherent in medical images are also discussed. Various approaches for segmenting medical images and related issues have been discussed. Observations are being made on the approaches, issues and their relative merits and demerits.

References
  1. Shapiro, L. G. and Stockman, G. C. 2001. "Computer Vision". New Jersey: Prentice-Hall, ISBN: 0-13-030796-3. pp. 279-325.
  2. Barghout, Lauren and Lee, Lawrence W. 2003. "Perceptual information processing system". Paravue Inc. U. S. Patent Application 10/618, 543, filed July 11.
  3. Läthen, G. 2010. "Segmentation Methods for Medical Image Analysis", PhD. Thesis, Department of Science and Technology, Linköping University.
  4. Haralick, R. M. and Shapiro, L. G. 1985. "Image Segmentation Techniques". Comput. Vis. Graph. Im. Proc. Vol. 29. pp. 100–132.
  5. Pal, N. R. and Pal, S. K. 1993. "A Review on Image Segmentation Techniques". Pattern Recognition. Vol. 26. pp. 1277–1294.
  6. Vantaram, S. R. and Saber, E. Oct-Dec 2012. "Survey of Contemporary Trends in Color Image Segmentation", Journal of Electronic Imaging. Vol. 21, Issue 4. ISSN: 1017-9909. pp. 040901-1-040901-28.
  7. Singh, M. and Misal, A. 2013. "A Survey Paper on Various Visual Image Segmentation Techniques". International Journal of Computer Science and Management Research. Vol. 2, Issue 1. ISSN: 2278-733X. pp. 1282-1288.
  8. Lucchese, L. and Mitra, S. K. 2001. "Color Image Segmentation: A State of the Art Survey". Proc. Indian National Sci. Acad. Vol. 67, Issue 2. pp. 207-221.
  9. Macovski, A. 1983. "Medical Imaging Systems". Prentice-Hall.
  10. Prince, J. L. and Links, J. M. 2006. "Medical Imaging Signals and System". Pearson Education.
  11. Lei, T. and Sewchand, W. 1992. "Statistical approach to X-Ray CT Imaging and its applications in image analysis – part II: A new stochastic model-based image segmentation technique for X-Ray CT image". IEEE Transactions on Medical Imaging. Vol. 11, Issue 1. pp. 62–69.
  12. Hill, F. S. 2001. "Computer Graphics using Open GL". 2nd Edition. New Delhi: Prentice Hall India. pp. 674-691.
  13. Chang, H. D. , Jiang, X. H. and Wang, J. L. 2001. "Color Image Segmentation: Advances and Prospects". Pattern Recognition. Vol. 34. pp. 2259-2281.
  14. Sharma, N. and Aggarwal, L. M. 2010. "Automated Medical Image Segmentation Techniques". Journal of Medical Physics. Vol. 35, Issue 1. pp. 3-14.
  15. Withey, D. J. and Koles, Z. J. 2007. "Three Generations of Medical Image Segmentation - Methods and Available Software". International Journal of Bioelectromagnetism, Vol. 9, No. 2. pp. 67-68.
  16. Udupa, J. K. and Samarasekera, S. 1996. "Fuzzy Connectedness And Object Definition: Theory, Algorithms And Applications In Image Segmentation". Graphical Models and Image Processing. Vol. 58, Issue 3. pp. 246–261.
  17. Mangin, J. F. , Frouin, V. , Bloch, I. , Regis, J. and Lopez-Krahe, J. 1995. "From 3D Magnetic Resonance Images to Structural Representations of the Cortex Topography Using Topology Preserving Deformations". Journal of Mathematical Imaging and Vison. Vol. 5. pp. 297–318.
  18. Malladi, R. , Sethian, J. A. and Vemuri, B. C. 1995. "Shape Modeling with Front Propagation: A Level Set Approach". IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 17, No. 2. pp. 158–175.
  19. Ahirwar, A. 2013. "Study of Techniques used for Medical Image Segmentation and Computation of Statistical Test for Region Classification of Brain MRI". International Journal of Information Technology and Computer Science. Vol. 5, No. 5. pp. 44-53.
  20. Bezdek, J. C. , Hall, L. O. and Clarke, L. P. 1993. "Review Of MR Image Segmentation Techniques Using Pattern Recognition". Medical Physics. Vol. 20, No. 4. pp. 1033–1048.
  21. Schalkoff, R. J. 1992. "Pattern Recognition: Statistical, Structural and Neural Approaches". John Wiley and Sons.
  22. Kamber, H. J. 2011. "Data Mining: Concepts & Techniques". 3rd Edition. Morgan Kaufmann.
  23. Dunn, J. C. 1973. "A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters". Journal of Cybernetics. Vol. 3. pp. 32–57.
  24. Coleman, G. B. and Andrews, H. C. 1979. "Image Segmentation by Clustering". Proceedings of IEEE. Vol. 5. pp. 773–785.
  25. Liang, Z. , MacFall, J. R. and Harrington, D. P. 1994. "Parameter Estimation and Tissue Segmentation from Multispectral MR Images". IEEE Transactions on Medical Imaging. Vol. 13. pp. 441–449.
  26. Sahoo, P. K. , Soltani, S. and Wong, A. K. C. 1988. "A Survey of Thresholding Techniques". Computer Vision, Graphics, and Image Processing. Vol. 41, Issue 2. pp. 233–260.
  27. Pham, D. L. , Xu, C. and Prince, J. L. 2000. "A Survey of Current Methods in Medical Image Segmentation". Annual Review of Biomedical Engineering. Vol. 2. pp. 315-338.
  28. Kohonen, T. 1990. "The Self-Organizing Map". Proc. IEEE. Vol. 78, Issue 9. pp. 1464–1480.
  29. Clark, J. W. 1991. "Neural Network Modelling". Physics in Medicine and Biology. Vol. 36. pp. 1259–1317.
  30. Haykin, S. 1994. "Neural Networks: A Comprehensive Foundation". Macmillan College, New York.
  31. Huang, H. Y. , Chen, Y. S. and Hsu, W. H. 2002. "Color Image Segmentation using a Self-Organizing Map Algorithm". Journal of Electronic Imaging. Vol. 11, Issue 2. pp. 136–148.
  32. Ilea, D. E. and Whelan, P. F. 2008. "CTex—An Adaptive Unsupervised Segmentation Algorithm based on Color-Texture Coherence". IEEE Transactions on Image Processing. Vol. 17, Issue 10. pp. 1926–1939,
  33. Li, S. Z. 1995. "Markov Random Field Modeling in Computer Vision". Springer.
  34. McInerney, T. , Hamarneh, G. , Shentone, M. , and Terzopoulos, D. 2002. "Deformable Organisms for Automatic Medical Image Analysis". Medical Image Analysis. Vol. 2. Elsevier. pp. 251-266.
  35. Prasad, G. , Joshi, A. A. , Feng, A. , Barysheva, M. , et. al. 2011. "Deformable Organisms and Error Learning for Brain Segmentation". Third International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Modelling Biological Shape Variability. pp. 135-147.
  36. Gopal, S. , Otaki, Y. , Arsanjani, R. , Berman, D. et. al. 2013. "Combining Active Appearance and Deformable Superquadric Models for LV Segmentation in Cardiac MRI". Medical Imaging 2013: Image Processing. Proc. SPIE 8669, Lake Buena Vista, FL, February 2013. Vol. 8869-15. pp. 1–8.
  37. Collins, D. L. , Zijdenbos, A. P. , Kollokian, V. , Sled, J. G. , Kabani, N. J. et al. 1998. "Design and Construction of a Realistic Digital Brain Phantom". IEEE Transactions in Medical Imaging. Vol. 17. pp. 463–468.
  38. Alfano, B. , Comerci, M. , Lerobina, M. , Prinster, A. et. al. 2011. "An MRI Digital Phantom for validation of segmentation methods". Medical Image Analysis. Vol. 15. Elsevier. pp. 329-339.
  39. http://www. bic. mni. mcgill. ca/brainweb/
  40. http://www. cma. mgh. harvard. edu/ibsr/
  41. http://www. rad. upenn. edu/sbia/
  42. http://www. cma. mgh. harvard. edu/iatr/
  43. http://www. itk. org/
  44. http://www. itksnap. org/pmwiki/pmwiki. php
  45. http://niftyseg. sourceforge. net/
  46. http://www. vtk. org/
Index Terms

Computer Science
Information Sciences

Keywords

Image Segmentation Mri Ct Thresholding Region-growing Classifiers Clustering Mrf Models Ann Atlas Guided Methods Level Set Models Deformable Models.