CFP last date
20 January 2025
Reseach Article

Multimodal Biometrics using Face, Ear and Iris Modalities

Published on February 2014 by Snehlata Barde, A. S. Zadgaonkar, G. R. Sinha
National Conference on Recent Advances in Information Technology
Foundation of Computer Science USA
NCRAIT - Number 2
February 2014
Authors: Snehlata Barde, A. S. Zadgaonkar, G. R. Sinha
2df5ee90-afc7-487e-8f72-4fdf20c3f980

Snehlata Barde, A. S. Zadgaonkar, G. R. Sinha . Multimodal Biometrics using Face, Ear and Iris Modalities. National Conference on Recent Advances in Information Technology. NCRAIT, 2 (February 2014), 9-15.

@article{
author = { Snehlata Barde, A. S. Zadgaonkar, G. R. Sinha },
title = { Multimodal Biometrics using Face, Ear and Iris Modalities },
journal = { National Conference on Recent Advances in Information Technology },
issue_date = { February 2014 },
volume = { NCRAIT },
number = { 2 },
month = { February },
year = { 2014 },
issn = 0975-8887,
pages = { 9-15 },
numpages = 7,
url = { /proceedings/ncrait/number2/15145-1411/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 National Conference on Recent Advances in Information Technology
%A Snehlata Barde
%A A. S. Zadgaonkar
%A G. R. Sinha
%T Multimodal Biometrics using Face, Ear and Iris Modalities
%J National Conference on Recent Advances in Information Technology
%@ 0975-8887
%V NCRAIT
%N 2
%P 9-15
%D 2014
%I International Journal of Computer Applications
Abstract

Automatic person identification is an important task in computer vision and related applications. Multimodal biometrics involves more than two modalities. The proposed work is an implementation of person identification fusing face, ear and iris biometric modalities used PCA based neural network classifier for feature extraction from the face and ear images and hamming distance for calculating iris templates. These features fused and used for identification. Better result was obtained if the modalities were combined. Identification was made using Eigen faces, Eigen ears, Template of iris and their features tested over the self created image database.

References
  1. R. Arun, Jain Anil, et al. Multimodal Biometrics: An Overview[C]. Proceedings of 12th European Processing Conference, 2004. 1221-1224(Vienna, Austria)
  2. A. Ross, A. K. Jain, et al. Information fusion in biometrics. Pattern Recognition Letters, 2003, 24(13):2115 –2125.
  3. M. Turk, A. Pentland et al. Eigenfaces for recognition[J]. Journal of Cognitive Science. 1991. 3(1):71-86.
  4. D. R. Kisku, J. K. Singh, M. Tistarelli,et al. Multisensor biometric evidence fusion for person authentication using wavelet decomposition and monotonic decreasing graph[C]. Proceedings of 7th International Conference on advances in Pattern Recognition (ICAPR)2009:205-208 (Kolkata, India)
  5. W. Zhao, R. Chellappa, A. Rosenfeld, P. J. Phillips,et al. Face Recognition[J]. An ACM Computing Surveys, 2003, 35(4):399-458.
  6. X. Y. Jing, Y. F. Yao, J. Y. Yang, M. Li, D. Zhang et al. Face and palmprint pixel level fusion and kernel DCVRBF classifier for small sample biometric recognition[J]. Pattern Recognition, 2007, 40 (3): 3209-3224.
  7. Ho T. K, Hull J. J, Srihari S. N et al. Decision combination in multiple classifier systems [J]. IEEE Trans. PAMI 1994, 16 (1): 66– 75.
  8. Cappelli, R. , Maio. D, Maltoni D et al. Combining fingerprint classifiers. In First Internet. Workshop on Multiple Classifier Systems, 2000 : 351–361
  9. A. Ross, A. K. Jain, et al. Information fusion in biometrics. Pattern Recognition Letters, 2003, 24(13): 2115 –2125.
  10. Jain, A. K. , Prabhakar, S. , Hong, L et al. A Multichannel approach to fingerprint classification[C]. IEEE Trans. PAMI 1999, 21 (4) : 348–359.
  11. A. Ross, R. Govindarajan et al. Feature level fusion using hand and face biometrics[C]. Proceedings of SPIE
  12. Conference on Biometric Technology for Human Identification, 2004, 5779:196 –204(Orlando ,USA)
  13. J. Heo,S. Kong,B. Abidi,M. Abidi,et al. Fusion of visible and thermal signatures with eyeglass removal for robust face recognition. IEEE workshop on Object Tracking and Classification Beyond the visible spectrum in conjunction, 2004:94–99,( Washington, DC, USA)
  14. G. R. Sinha, Kavita Thakur,et al. Modified PCA based Noise reduction of CFA images[J]. Journal of Science, Technology & Management, 2010,1 (2):60-67.
  15. L. Hong, A. K. Jain, et al. Integrating Faces and Fingerprints For Personal Identification[J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 1998, 20(12):1295-1307.
  16. R. Singh, M. Vatsa, A. Noore. et al. Integrated multilevel image fusion and match score fusion of visible and infrared face images for robust face recognition[J]. Pattern Recognition ACM Digital Library, 2008,41(3): 880 –893.
  17. S. Singh, A. Gyaourova, G. Bebis, Pavlidies,et al. Infrared and visible image fusion for face recognition. in of SPIE Defense and security symposium , 2004,41: 585 –596.
  18. Anurag Shrivastava and G. R. Sinha et al. Biometric Security Technologies: A Case Study, International Journal of Image Processing and Applications (International Science Press), 2010, 1(1) : 1-5
  19. W. Kong, D. Zhang et al. Accurate iris segmentation based on novel reflection and eyelash detection model. Proceedings of 2001International Symposium on Intelligent Multimedia, Video and Speech Processing, 2001,(Hong Kong)
  20. R. Wildes, J. Asmuth, G. Green, S. Hsu, R. Kolczynski, J. Matey,S. McBride. A system for automated iris recognition. Proceedings IEEE Workshop on Applications of Computer Vision, Sarasota, FL, 1994: 121-128.
  21. Kulkarni, S. B. , Lulkarni U. P. , Hegadi R. S. , Analysis of Iris Recognition using Normalized and Un-normalized Iris images. International Journal of Information Processing Volume 7, Issue 3, pp. 26-33,2013.
  22. Kulkarni S. B. , Shirodkar S. , Hegadi R. S. , Kulkarni U. P. , Iris Recognition using Fusion of Gray Level Co-occurrence Matrix and Gray Level Run Length Matrix, ICSIP 2013, Elsevier, pp. 241 - 246, 2013.
  23. J. Daugman, et al. Biometric personal identification system based on iris analysis. United States Patent,1994, Patent Number: 5,291,560.
  24. L. Martin, M. Robert. Person identification technique using human iris recognition. International Conference on Vision Interface, Canada, 2002
Index Terms

Computer Science
Information Sciences

Keywords

Multimodal Biometrics Pca Eigen Faces Eigen Ears Euclidian Distance Hamming Distance.