CFP last date
20 December 2024
Reseach Article

On Solving Abel Integral Equations Involving Fox H-Function

Published on July 2015 by Arif M. Khan, Amit Chouhan, Lalita Mistri
National Conference on Intelligent Systems (NCIS 2014)
Foundation of Computer Science USA
NCIS2014 - Number 1
July 2015
Authors: Arif M. Khan, Amit Chouhan, Lalita Mistri
41c0fde8-6e2a-488f-872a-4319aee0a0c5

Arif M. Khan, Amit Chouhan, Lalita Mistri . On Solving Abel Integral Equations Involving Fox H-Function. National Conference on Intelligent Systems (NCIS 2014). NCIS2014, 1 (July 2015), 13-16.

@article{
author = { Arif M. Khan, Amit Chouhan, Lalita Mistri },
title = { On Solving Abel Integral Equations Involving Fox H-Function },
journal = { National Conference on Intelligent Systems (NCIS 2014) },
issue_date = { July 2015 },
volume = { NCIS2014 },
number = { 1 },
month = { July },
year = { 2015 },
issn = 0975-8887,
pages = { 13-16 },
numpages = 4,
url = { /proceedings/ncis2014/number1/21877-3271/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 National Conference on Intelligent Systems (NCIS 2014)
%A Arif M. Khan
%A Amit Chouhan
%A Lalita Mistri
%T On Solving Abel Integral Equations Involving Fox H-Function
%J National Conference on Intelligent Systems (NCIS 2014)
%@ 0975-8887
%V NCIS2014
%N 1
%P 13-16
%D 2015
%I International Journal of Computer Applications
Abstract

The present paper deals with the solution of Abel integral equation involving Fox- H function. The method is based on approximations of fractional integrals and Caputo derivatives due to Jahanshahi et al. The approximation formula of Abel integral equation using numerical trapezoidal rule is also obtained. The paper is also illustrating the effectiveness of proposed approach in form of many particular examples. The results are mostly derived in a closed form in terms of the H-function, suitable for numerical computation. On account of general nature of H-function a number of results involving special functions can be obtained merely by specializing the parameters.

References
  1. Gorenflo R. 1996. Abel integral equations with special emphasis on applications. Lectures in Mathematical Sciences, Vol. 13, the University of Tokyo, Graduate School of Mathematical Sciences, Tokyo.
  2. Gorenflo R. and Vessella S. 1991. Abel integral equations. Lecture Notes in Mathematics, 1461, Springer, Berlin.
  3. Knill O. , Dgani R. and Vogel M. 1993. A new approach to Abel's integral operator and its application to stellar winds. Astronom. And Astrophysics. 274(3), 1002–1008.
  4. Kosarev E. L. 1980. Applications of integral equations of the first kind in experiment physics. Comput. Phys. Commun. 20(1), 69–75.
  5. Gel'fand I. M. and Shilov G. E. 1964. Generalized functions. Vol. I, Translated by Eugene Saletan, Academic Press, New York.
  6. Kincaid D. and Cheney W. 1991. Numerical analysis. Brooks/Cole, Pacific Grove, CA.
  7. RieweF. 1997. Mechanics with fractional derivatives. Phys. Rev. E. , 55(3), 3581–3592.
  8. Avazzadeh Z. , Shafiee B. , and Loghmani G. B. 2011. Fractional calculus of solving Abel's integral equations using Chebyshev polynomials. Appl. Math. Sci. (Ruse) 5(45), 2207–2216.
  9. Baker C. T. H. 1977. The numerical treatment of integral equations. Clarendon Press, Oxford.
  10. Baratella P. and Orsi A. P. 2004. A new approach to the numerical solution of weakly singular Volterra integral equations. J. Comput. Appl. Math. 163(2), 401–418.
  11. Brunner H. 2004. Collocation methods for Volterra integral and related functional differential equations. Cambridge Univ. Press, vol. 15.
  12. Lepik U. 2009. Solving fractional integral equations by the Haar wavelet method. Appl. Math. Comput. 214(2), 468–478.
  13. Saeedi H. , Moghadam M. M. , Mollahasani N. , Chuev G. N. 2011. A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1154–1163.
  14. Saeedi H. , Mollahasani N. , Moghadam M. M. , and Chuev G. N. 2011. An operational Haarwavelet method for solving fractional Volterra integral equations. Int. J. Appl. Math. Comput. Sci. 21(3),535–547.
  15. Bougoffa L. , Mennouni A. , and Rach R. C. 2013. Solving Cauchy integral equations of the first kind by the Adomian decomposition method, Appl. Math. Comput. , 219(9), 4423–4433.
  16. Lubich C. 1985. Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comp. 45(172), 463–469.
  17. Lubich C. 1986. Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719.
  18. Plato R. 2005. Fractional multistep methods for weakly singular Volterra integral equations of the first kind with perturbed data. Numer. Funct. Anal. Optim. 26(2), 249–269.
  19. Li M. and Zhao W. 2013. Solving Abel's type integral equation with Mikusinski's operator of fractional order. Adv. Math. Phys. , Art. ID 806984, 4 pp.
  20. Liu Y. and TaoL. 2007. Mechanical quadrature methods and their extrapolation for solving first kind Abel integral equations. J. Comput. Appl. Math. 201(1), 300–313.
  21. Jahanshahi S. , Babolian E. , Torres D. E. F. and Vahidi A. R. 2014. Solving abel integral equations of first kind via fractional calculus, arXiv:14096v1[math. CA] Sept. 2014, 1-11.
  22. Malinowska A. B. and Torres D. F. M. 2012. Introduction to the fractional calculus of variations. Imp. Coll. Press, London.
  23. Mathai A. M. , Saxena R. K. , Haubold H. J. 2010. The H function Theory and applications. Springer science, business media LLC.
  24. Odibat Z. 2006. Approximations of fractional integrals and Caputo fractional derivatives. Appl. Math. Comput. 178(2), 527–533.
  25. Odibat Z. M. 2009. Computational algorithms for computing the fractional derivatives of functions. Math. Comput. Simulation 79(7), 2013–2020.
  26. Podlubny I. 1999. Fractional differential equations. Mathematics in Science and Engineering. 198,Academic Press, San Diego, CA.
  27. Diethelm K. 1997. An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. , 5(1), 1–6.
  28. Diethelm K. , Ford N. J. , Freed A. D. and Luchko Yu. 2005. Algorithms for the fractional calculus: A selection of numerical methods. Comput. Methods Appl. Mech. Engrg. 194(6),743–773.
  29. Diethelm K. and Freed A. D. 1998. The FracPECE subroutine for the numerical solution of differential equations of fractional order. In:Proc. of Forschung and wissenschaftliches Rechnen: Beitr¨age Zum Heinz-Billing-Preis, 57–71.
  30. Pooseh S. , Almeida R. and Torres D. F. M. 2012. Approximation of fractional integrals by means of derivatives, Comput. Math. Appl. 64(10), 3090–3100.
  31. Pooseh S. , Almeida R. and Torres D. F. M. 2013. Numerical approximations of fractional derivatives with applications. Asian J. Control 15(3), 698–712.
  32. Pooseh S. , Almeida R. and Torres D. F. M. 2014. Fractional order optimal control problems with free terminal time. J. Ind. Manag. Optim. 10(2), 363–381.
Index Terms

Computer Science
Information Sciences

Keywords

Abel Integral Equations Fox H-function Riemann–liouville Fractional Derivatives Caputo Fractional Derivatives.