CFP last date
20 December 2024
Reseach Article

Survey on Change Detection in SAR Images

Published on December 2014 by Hire Gayatri Ashok, D. R. Patil
National Conference on Emerging Trends in Computer Technology
Foundation of Computer Science USA
NCETCT - Number 2
December 2014
Authors: Hire Gayatri Ashok, D. R. Patil
e51eabf4-5f99-4d12-92dc-d2e03fad15d7

Hire Gayatri Ashok, D. R. Patil . Survey on Change Detection in SAR Images. National Conference on Emerging Trends in Computer Technology. NCETCT, 2 (December 2014), 4-7.

@article{
author = { Hire Gayatri Ashok, D. R. Patil },
title = { Survey on Change Detection in SAR Images },
journal = { National Conference on Emerging Trends in Computer Technology },
issue_date = { December 2014 },
volume = { NCETCT },
number = { 2 },
month = { December },
year = { 2014 },
issn = 0975-8887,
pages = { 4-7 },
numpages = 4,
url = { /proceedings/ncetct/number2/19085-4019/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 National Conference on Emerging Trends in Computer Technology
%A Hire Gayatri Ashok
%A D. R. Patil
%T Survey on Change Detection in SAR Images
%J National Conference on Emerging Trends in Computer Technology
%@ 0975-8887
%V NCETCT
%N 2
%P 4-7
%D 2014
%I International Journal of Computer Applications
Abstract

Change detection in remote sensing images becomes more and more important for the last few decades, among them change detection in Synthetic Aperture Radar (SAR) images are having some more difficulties than optical ones due to the fact that SAR images suffer from the presence of the speckle noise. In this paper the Systematic survey of the common processing steps and core decision rules for change detection in SAR images has been carried out. Basically change detection in SAR images is divided in two steps a) Generating difference image & b) Detection of change in difference image, hence in this paper we also discuss various methods to generate difference image along with the change detection algorithm.

References
  1. R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, "Image change detection algorithms: A systematic survey", IEEE Trans. Image Process. , vol. 14, no. 3, pp. 294-307, Mar. 2005.
  2. L. Bruzzone and D. F. Prieto, "An adaptive semiparametric and contextbased approach to unsupervised change detection in multi-temporal remote-sensing images", IEEE Trans. Image Process. , vol. 11, no. 4, pp. 452-466 , Apr. 2002.
  3. A. Robin, L. Moisan, and S. Le Hegarat-Mascle, "An a-contrario approach for subpixel change detection in satellite imagery", IEEE Trans. Pattern Anal. Mach. Intell. , vol. 32, no. 11, pp. 1977-1993, Nov. 2010.
  4. M. Bosc, F. Heitz, J. P. Armspach, I. Namer, D. Gounot, and L. Rumbach, "Automatic change detection in multimodal serial MRI: Application to multiple sclerosis lesion evolution", Neuroimage, vol. 20, no. 2, pp. 643-656, Oct. 2003.
  5. D. Rey, G. Subsol, H. Delingette, and N. Ayache, "Automatic detection and segmentation of evolving processes in 3-D medical images: Application to multiple sclerosis", Med. Image Anal. , vol. 6, no. 2, pp. 163-179, Jun. 2002.
  6. D. M. Tsai and S. C. Lai, "Independent component analysis-based background subtraction for indoor surveillance", IEEE Trans. Image Process. , vol. 18, no. 1, pp. 158-167, Jan. 2009.
  7. S. S. Ho and H. Wechsler, "A martingale framework for detecting changes in data streams by testing exchangeability", IEEE Trans. Pattern Anal. Mach. Intell. , vol. 32, no. 12, pp. 113-2127, Dec. 2010.
  8. A. Singh, "Digital change detection techniques using remotely sensed data", Int. J. Remote Sens. , vol. 10, no. 6, pp. 989-1003, 1989.
  9. E. J. M. Rignot and J. J. Van Zyl, "Change detection techniques for ERS-1 SAR data", IEEE Trans. Geosci. Remote Sens. , vol. 31, no. 4, pp. 896-906, Jul. 1993.
  10. Y. Bazi, L. Bruzzone, and F. Melgani, "An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images", IEEE Trans. Geosci. Remote Sens. , vol. 43, no. 4, pp. 874-887, Apr. 2005.
  11. J. Inglada and G. Mercier, "A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis", IEEE Trans. Geosci. Remote Sens. , vol. 45, no. 5, pp. 1432-1445, May 2007.
  12. W. Sezgin and B. Sankur, "A survey over image thresholding technique and quantitative performance evaluation", J. Electron. Imag. , vol. 13, no. 1, pp. 146-165, Jan. 2004.
  13. Fan Wang, Yan Wu, Qiang Zhang, Peng Zhang, Ming Li, and Yunlong Lu, "Unsupervised Change Detection on SAR Images Using Triplet Markov Field Model", IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,. , VOL. 10, NO. 4, JULY 2013.
  14. Jin Zheng and Hongjian You, "A New Model- Independent Method for Change Detection in Multitemporal SAR Images Based on Radon Transform and Jeffrey Divergence", IEEE GEOSCIENCE AND REMOTE SENSING LETTERS. , vol. 10, no. 1, JAN. 2013. .
  15. Cyril Carincotte, Stphane Derrode, and Salah Bourennane, "Unsupervised Change Detection on SAR Images Using Fuzzy Hidden Markov Chains", IEEE Trans. Geosci. Remote Sens, VOL. 44, NO. 2, FEBRUARY 2006.
  16. Maoguo Gong, Zhiqiang Zhou and Jingjing Ma, "Change Detection in Synthetic Aperture Radar Images based on Image Fusion and Fuzzy Clustering, " IEEE Trans. Image Process. , vol. 21, no. 4, pp. 2141-2151, Apr. 2012.
  17. J. Cihlar, T. J. Pultz, and A. L. Gray, "Change detection with synthetic aperture radar", Int. J. Remote Sens. , vol. 13, pp. 401-414, 1992.
  18. R. J. Dekker, "Speckle filtering in satellite SAR change detection imagery", Int. J. Remote Sens. , vol. 19, pp. 1133-1146, 1998.
  19. K. Grover and S. Quegan, "Quantitative estimation of tropical forest cover by SAR", IEEE Trans. Geosci. Remote Sens. , vol. 37, no. 1, pp. 479-490, Jan. 1999.
  20. C. Deledalle, L. Denis, and F. Tupin, "Iterative weighted maximum likelihood denoising with probabilistic patch-based weights", IEEE Trans. Image Process. , vol. 18, no. 12, pp. 2661?2672, Dec. 2009.
  21. R. O. Duda and P. E. Hart, "Pattern Classification and Scene Analysis". Hoboken, NJ, USA: Wiley, 1973.
  22. K. Fukunaga and L. D. Hostetler, "The estimation of the gradient of a density function, with applications in pattern recognition", IEEE Trans. Inf. Theory, vol. IT-21, no. 1, pp. 32?40, Jan. 1975.
  23. M. Fashing and C. Tomasi, "Mean shift is a bound optimization", IEEE Trans. Pattern Anal. Mach. Intell. , vol. 27, no. 3, pp. 471?474, Mar. 2005.
  24. Y. Cheng, "Mean shift, mode seeking, and clustering", IEEE Trans. Pattern Anal. Mach. Intell. , vol. 17, no. 8, pp. 790?799, Aug. 1995.
  25. D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis", IEEE Trans. Pattern Anal. Mach. Intell. , vol. 24, no. 5, pp. 603?619, May 2002.
  26. W. Skarbek, "Generalized Hilbert scan in image printing", in Theoretical Foundations of Computer Vision," R. Klette and W. G. Kropetsh, Eds. Berlin, Germany: Akademik Verlag, 1992.
  27. R. Dafner, D. Cohen-Or, and Y. Matias, "Context-based space filling curves", Comput. Graph. Forum, vol. 19, no. 3, 2000.
  28. J. Hungershfer and J. Wierum, "On the quality of partitions based on space-filling curves", in Int. Conf. Computational Science Amsterdam, The Netherlands, Apr. 21?24, 2002, pp. 36?45.
  29. S. Krinidis and V. Chatzis, "A robust fuzzy local information C-means clustering algorithm", IEEE Trans. Image Process. , vol. 19, no. 5, pp. 1328-1337, May 2010.
  30. J. D. Villasenor, D. R. Fatland, and L. D. Hinzman, "Change detection on Alaska north slope using repeat-pass ERS-1 SAR imagery", IEEE Trans. Geosci. Remote Sens. , vol. 31, pp. 227-236, 1993.
  31. L. G. Brown, Asurvey of image registration techniques, ACMComput. Surv. , vol. 24, no. 4, 1992.
  32. B. Zitov and J. Flusser, Image registration methods: A survey, Image Vis. Comput. , vol. 21, pp. 977-1000, 2003.
  33. L. Ibez, W. Schroeder, L. Ng, and J. Cates, The ITK Software Guide: The Insight Segmentation and Registration Toolkit, 1. 4 ed: Kitware, Inc. , 2003.
  34. A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, A featurebased, robust, hierarchical algorithm for registering pairs of images of the curved human retina, IEEE Trans. Pattern Anal. Mach. Intell. , vol. 24, no. 3, pp. 347-364, Mar. 2002.
  35. C. V. Stewart, C. -L. Tsai, and B. Roysam, The dual-bootstrap iterative closest point algorithm with application to retinal image registration, IEEE Trans. Med. Imag. , vol. 22, no. 11, pp. 1379-1394, Nov. 2003.
  36. L. M. T. Carvalho, L. M. G. Fonseca, F. Murtagh, and J. G. P. W. Clevers, Digital change detection with the aid of multi-resolution wavelet analysis, Int. J. Remote Sens. , vol. 22, no. 18, pp. 3871-3876, 2001.
  37. S. Quegan and J. Schou, The principles of polarimetric filtering,in Proc. IGARSS, Aug. 1997, pp. 1041-1043.
  38. R. Touzi, A review of speckle filtering in the context of estimation theory, IEEE Trans. Geosci. Remote Sens. , vol. 40, no. 6, pp. 2392- 2404, Nov. 2002
Index Terms

Computer Science
Information Sciences

Keywords

Synthetic Aperture Radar (sar) Difference Image Image Fusion Image Change Detection Algorithms