We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Intelligent Systems for Agriculture Domain

Published on December 2014 by Savita Kolhe, G K Gupta
National Conference on Emerging Trends in Computer Technology
Foundation of Computer Science USA
NCETCT - Number 1
December 2014
Authors: Savita Kolhe, G K Gupta
70d4e841-7003-4bfb-97db-666f4d40a019

Savita Kolhe, G K Gupta . Intelligent Systems for Agriculture Domain. National Conference on Emerging Trends in Computer Technology. NCETCT, 1 (December 2014), 14-18.

@article{
author = { Savita Kolhe, G K Gupta },
title = { Intelligent Systems for Agriculture Domain },
journal = { National Conference on Emerging Trends in Computer Technology },
issue_date = { December 2014 },
volume = { NCETCT },
number = { 1 },
month = { December },
year = { 2014 },
issn = 0975-8887,
pages = { 14-18 },
numpages = 5,
url = { /proceedings/ncetct/number1/19079-4008/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 National Conference on Emerging Trends in Computer Technology
%A Savita Kolhe
%A G K Gupta
%T Intelligent Systems for Agriculture Domain
%J National Conference on Emerging Trends in Computer Technology
%@ 0975-8887
%V NCETCT
%N 1
%P 14-18
%D 2014
%I International Journal of Computer Applications
Abstract

In this paper, we describe the different Intelligent Systems developed for Agriculture domain. The development of Intelligent System for disease diagnosis in crops is also explained in detail. Its different components are described one-by-one. The system was evaluated and found useful for Cultivators for effective decision making.

References
  1. Akimoto, M. , Miyazaki, M. , Lee, Hee-Hyol, Nishimura, T. , Tamura, M. and Miyakawa, M. 2009. Using fuzzy reasoning to support a system of diagnosis of skin disease. Bioimages 17, 9-18.
  2. Al-Ahmar, M. A. 2009. An object-oriented expert system for diagnosis of fungal diseases of date palm. Int. J. Soft Computing 4(5), 201-207.
  3. Bajwa, W. I. and Kogan, M. 2010. Internet-based IPM. Informatics and Decision Support. World Wide Web, http://ipmworld. umn,edu/chapters/Bajwa. htm, May 2010.
  4. Batchelor, W. D. , Meglendon, R. W. , Adams, D. B. and Jones, J. W. 1989. Evolution of SMARTSOY : an expert system for insect pest management, Agriculture systems, 31(1).
  5. Boyd, D. W. and Sun, M. K. 1994. Prototyping an expert system for diagnosis of potato diseases. Computers and Electronics in Agriculture, 10(3), 259-267.
  6. Buchanan, B. G. and Shortliffe, E. H. 1984. Rule-based expert systems: the MYCIN experiments of the Stanford Heuristic Programming Project, Addison-Wesley.
  7. Cernohorska, J. , Dvorak, M. , Harmancova, D. , Novak, V. and Natr, L. 1995. Fytotrof - an expert system for diagnosis of plant nutrient deficiency based on visual symptoms. Scientia-Agriculturae-Bohemica 26(3), 199-208.
  8. Deer-Ascough, L. , Jones, D. D. , Barrett, J. R. and Okos, M. R. 1992. Soybean oil extraction diagnostic expert system. Applied Engineering in Agriculture, 8: 4, 545-552; Presented as ASAE Paper No. 88-6544.
  9. Fisher, A. C. , Lake, S. P. , Cunningham, I. P. and Chandna, A. 2010. Web-StrabNet: a web-based expert system for the differential diagnosis of vertical strabismus (squint). Computational and Mathematical Methods in Medicine, 11(1), 89 – 97. DOI: 10. 1080/17486700903010157.
  10. Gomez, C. , Hornero, R. , Abasolo, D. , Fernanadez, A. and Escudero, J. 2009. Analysis of MEG background activity in Alzheimer's disease using nonlinear methods and ANFIS. Annals of Biomedical Engineering, 37(3), 586-594.
  11. Gonzalez-Andujar, J. L. 2009. Expert system for pests, diseases and weeds identification in olive crops. Expert Systems with Applications, 36(2), part 2, 3278-3283.
  12. Gonzalez-Andujar, J. L. , Fernandez-Quintanilla, C. , Izquierdo, J. , Urbano, J. M. 2006. SIMCE: An expert system for seedling weed identification in cereals. Computers and Electronics in Agriculture, 54,115-123.
  13. Gupta, U. G. 2000. Information Systems : Success in 21st Century, Prentice Hall.
  14. Harrison, S. R. 1991. Validation of agricultural Expert System. Agricultural System, 35, 265-285.
  15. Janssen, J. A. E. B. , Krol, M. S. , Schielen, R. M. J. , Hoekstra, A. Y. and De Kok, J. L. 2010. Assessment of uncertainties in expert knowledge, illustrated in fuzzy rule-based models. Ecological Modelling 221, 1245-1251.
  16. Jensen, A. L. , Boll, P. S. , Thysen, I. and Pathak, B. K. 2000. Pl@nteInfo - a web-based system for personalized decision support in crop management. Computers and Electronics in Agriculture, 25(3), 271-293.
  17. Jensen, Allan L. 2001. Building a web-based information system for variety selection in field crops-objectives and results. Computers and Electronics in Agriculture, 32, 195-211.
  18. Khaled Shaalan, Mona El-Badry and Ahmed Rafea. 2004. A multi-agent approach for diagnostic expert systems via the Internet. Expert Systems with Applications, 27, 1-10.
  19. Kolhe, Savita, Kamal, Raj, Saini, Harvinder S. and Gupta, G. K. 2007. Prototype intelligent information system for disease diagnosis in crops". In 3rd Indian international conference on artificial intelligence (IICAI-07), Pune (Maharashtra), India. 1582-1594.
  20. Kolhe, Savita, Kamal, Raj, Saini, Harvinder S. and Gupta, G. K. 2009. A fuzzy-logic based on-line disease diagnosis system for soybean. A fuzzy-logic based on-line disease diagnosis system for soybean. Soybean Research, 7, 73-81.
  21. Kolhe, Savita, Kamal, Raj, Saini, Harvinder S. and Gupta, G. K. 2011a. A web-based intelligent disease-diagnosis system using a new fuzzy-logic based approach for drawing the inferences in crops. Computers and Electronics in Agriculture, 76, 16-27.
  22. Kolhe, Savita, Kamal, Raj, Saini, Harvinder S. and Gupta, G. K. 2011b. An intelligent multimedia interface for fuzzy logic based inference in crops. Expert System with Applications, 38:12, 14592-14601.
  23. Kolhe, Savita, Kamal, Raj, Saini, Harvinder S. and Gupta, G. K. 2011c. Rule-promotion : a new fuzzy-logic approach for drawing the inferences in rule-based expert system. Journal of the Indian Society of Agricultural Statistics 65(3), 359-365.
  24. Kolhe, Savita, Kamal, Raj, Saini, Harvinder S. and Gupta, G. K. 2013. Expert System for Disease Diagnosis in Soybean-ESDDS. Journal of the Indian Society of Agricultural Statistics 67(1), 79-88.
  25. Kramer, E. , Cavero, D. , Stamer, E. and Krieter, J. 2009. Mastitis and lameness detection in dairy cows by application of fuzzy logic. Livestock Science 125, 92-96.
  26. Latin, R. and Rettinger, J. C. 1987. Expert Systems in plant pathology. Plant Diseases, 71(10), 866-872.
  27. Mayer, R. E. 2001. Multimedia Learning, Cambridge University Press, New York.
  28. Mosqueira_Rey, E and Monet-Bonillo, V. 2000. Validation of intelligent systems: a critical study and a tool. Expert System Application, 18, 1-16.
  29. Plant, R. E. and Stone, N. D. 1991. Knowledge-based Systems in Agriculture. McGraw-Hill, New York, NY.
  30. Plant, R. E. , Zalom, F. G. , Young, J. A. and Rice, R. E. 1989. CALEX/peaches, an expert system for the diagnosis of peach and nectarine disorders. HortScience, 24(4), 700.
  31. Potter, W. D. , Deng, X. , Li, J. , Xu, M. , Wei, Y. , Lappas, I. , Twery, M. J. and Bennett, D. J. 2000. A Web-based expert system for gypsy moth risk assessment. Computers and Electronics in Agriculture, 27, 95-105.
  32. Power, D. J. 2002. A brief history of decision support systems. DSSResources. com, World Wide Web, http://DSSResources. com/history/dsshistory. html, Version 2. 0.
  33. Rakityanskaya, A. B. and Rotshtein, A. P. 2007. Fuzzy relation-based diagnosis. Automation and Remote Control, 68(12), 2198-2213.
  34. Rong, Libin and Li, Daoliang. 2008. A web based expert eystem for milch cow disease diagnosis system in China. Book Chapter in Computer and Computing Technologies In Agriculture, Vol II, ISSN 1571-5736 (Print) 1861-2288, DOI 10. 1007/978-0-387-77253-0, Springer Boston, 1441-1445.
  35. Rotshtein, A. P. and Raktyanska, H. B. 2009. Adaptive diagnostic system based on fuzzy relations. Cybernetics and Systems Analysis, 45(4), 623-637.
  36. Saini, Harvinder S. , Raj Kamal and Sharma, A. N. 2002. Web-based fuzzy expert system for integrated pest management in soybean. International Journal of Information Technology, 8(2), 54-74.
  37. Saini, Harvinder Singh, Sharma, A. N. and Raj Kamal. 1997. Graphical user interface for a fuzzy expert system: SOYPEST. Vivek, 10. 4, 231-239.
  38. Shortliffe, E. H. 1976. Computer-based medical consultation: MYCIN, New York: American Elsevier.
  39. Tao, B. Y. and Zhang, J. , H. 1992. A winter wheat seedling diagnostic expert system (WWSDES). Journal-of-Nanjing-Institute-of-Meteorology, 15(3), 396.
  40. Thomson, A. J. and Willoughby, Ian. 2004. A web-based expert system for advising on herbicide use in Great Britain. Computers and Electronics in Agriculture, 42, 43-49.
  41. Thomson, A. J. , Allen, E. and Morrison, D. 1998. Forest tree disease diagnosis over the World Wide Web. Computers and Electronics in Agriculture, 21, 19-31.
  42. Turban, E. 1992. Expert Systems and Applied Artificial Intelligence. Macmillan.
  43. Waterman, D. A. 1986. A guide to expert systems. Addison-Wesley.
  44. Wharton, P. S. , Kirk, W. W. , Baker, K. M. and Duynslager, L. 2008. A web-based interactive system for risk management of potato late blight in Michigan. Computers and Electronics in Agriculture, 61, 136-148.
  45. Yuan-CunXing; Guo-JianHua; Wei-YaFeng; Xue-JianJun; Lu-Juan, Cheng-JianGuo; Tang-MingXia; Han-Juan; Yuan-CX; Guo-JH; Wei-YF; Xue-JJ; Lu-J; Cheng-JG; Tang-MX and Han-J. 2003. Application of the agricultural expert-system in the rice cultivation. Southwest-China-Journal-of-Agricultural-Sciences, 16(4), 130-133.
  46. Zetian, Fu, Feng, Xu, Yun , Zhou and Zhang, XiaoShuan. 2005. Pig-vet : a web-based expert system for pig disease diagnosis. Expert System with Applications, 29, 93-103.
Index Terms

Computer Science
Information Sciences

Keywords

Information System Intelligent System Artificial Intelligence Agriculture.