CFP last date
20 December 2024
Reseach Article

Au25 Gold Nanoclusters for enhancing Organic Cell Parameters

Published on July 2018 by Yashaswini Gowda N, R. V. Manjunath, B. R. Lakshmikantha
National Conference on Electronics, Signals and Communication
Foundation of Computer Science USA
NCESC2017 - Number 2
July 2018
Authors: Yashaswini Gowda N, R. V. Manjunath, B. R. Lakshmikantha
a0a84b91-8c7d-42cd-a1fb-f61a6826d840

Yashaswini Gowda N, R. V. Manjunath, B. R. Lakshmikantha . Au25 Gold Nanoclusters for enhancing Organic Cell Parameters. National Conference on Electronics, Signals and Communication. NCESC2017, 2 (July 2018), 31-35.

@article{
author = { Yashaswini Gowda N, R. V. Manjunath, B. R. Lakshmikantha },
title = { Au25 Gold Nanoclusters for enhancing Organic Cell Parameters },
journal = { National Conference on Electronics, Signals and Communication },
issue_date = { July 2018 },
volume = { NCESC2017 },
number = { 2 },
month = { July },
year = { 2018 },
issn = 0975-8887,
pages = { 31-35 },
numpages = 5,
url = { /proceedings/ncesc2017/number2/29616-7085/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 National Conference on Electronics, Signals and Communication
%A Yashaswini Gowda N
%A R. V. Manjunath
%A B. R. Lakshmikantha
%T Au25 Gold Nanoclusters for enhancing Organic Cell Parameters
%J National Conference on Electronics, Signals and Communication
%@ 0975-8887
%V NCESC2017
%N 2
%P 31-35
%D 2018
%I International Journal of Computer Applications
Abstract

Ultra small gold nanoparticles (GNPs) also called gold nano clusters (GNCs) because of their unique structure comprises of very few atoms and are capable of molecular level interactions by virtue of their molecule like properties. Introduction of GNCs to assist the transport layer of organic solar cells fetched higher current output as compared to cells with GNPs and cells with no gold at all. GNC devices showed a maximum efficiency enhancement by a factor of 1. 74 to that of reference cell without gold. Faster electron-hole separation and movement towards respective electrodes leads to better efficiency and we suggest that electronic properties of GNCs enhance the action of transport layer PEDOT:PSS. But GNCs give more to the solar cell. They also allow more light to pass through them, thus, allowing more light to reach the active layer via transport layer, leading to increase in photocurrent resulting in overall parameter enhancement. It was evident with our experiments that single layer of GNCs provides double benefits of transport enhancement and absorption enhancement adding up to increased cell parameters and efficiency keeping the low cost advantage of organic solar cells intact.

References
  1. Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices Kyungkon Kim1 and David L. Carroll1,a) Appl. Phys. Lett. 87, 203113 (2005); http://dx. doi. org/10. 1063/1. 2128062
  2. Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles Fang-Chung Chen1,2,a), Jyh-Lih Wu1,3, Chia-Ling Lee1,2, Yi Hong1,2, Chun-Hong Kuo4 and Michael H. Huang4 Appl. Phys. Lett. 95, 013305 (2009)
  3. Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers Feng-Xian Xie1, Wallace C. H. Choy1,a), Charlie C. D. Wang1, Wei E. I. Sha1 and Dixon D. S. Fung1 Appl. Phys. Lett. 99, 153304 (2011)
  4. APL 2006 89 093103
  5. APL 2009 95 013305
  6. Nat. Mater. 2010, 9, 205-13
  7. Size dependence of spherical metal nanoparticles on absorption enhancements of plasmonic organic solar cells Inho Kim a,*, Kyu-Sung Lee b, Taek-Sung Lee a, Doo Seok Jung a, Wook-Seong Lee a, Won Mok Kim a, Kyeong-Seok Lee a Synthetic metals 199, 2015, 174-178
  8. Tesselated paper 8a) Boosting the Photovoltage of Dye-Sensitized Solar Cells with Thiolated Gold NanoclustersHyunbong Choi , Yong-Siou Chen , Kevin G. Stamplecoskie , and Prashant V. Kamat *J. Phys. Chem. Lett. , 2015, 6 (1), pp 217–223
  9. Size Dependence of Atomically Precise Gold Nanoclusters in Chemoselective Hydrogenation and Active Site Structure Gao Li †, De-en Jiang ‡, Santosh Kumar †, Yuxiang Chen †, and Rongchao Jin *† ACS Catal. , 2014, 4 (8), pp 2463–2469
  10. Interaction of gold nanoclusters with IR light emitting cyanine dyes: a systematic fluorescence quenching study Chiranjib Banerjee, Jagannath Kuchlyan, Debasis Banik, Niloy Kundu, Arpita Roy, Surajit Ghosh and Nilmoni Sarkar* DOI: 10. 1039/c4cp02563f
  11. Fluorescent Gold Nanoclusters: Recent Advances in Sensing and Imaging Li-Yi Chen, Chia-Wei Wang, Zhiqin Yuan, and Huan-Tsung Chang* Anal. Chem. 2015, 87, 216-229
  12. Zheng, J. ; Nicovich, P. R. ; Dickson, R. M. Annu. Rev. Phys. Chem. 2007, 58, 409-431.
  13. Chen, S. ; Ingram, R. S. ; Hostetler, M. J. ; Pietron, J. J. ; Murray,R. W. ; Schaaff, T. G. ; Khoury, J. T. ; Alvarez, M. M. ; Whetten, R. L. Science 1998, 280, 2098-2101.
  14. Lee, D. ; Donkers, R. L. ; Wang, G. ; Harper, A. S. ; Murray, R. W. J. Am. Chem. Soc. 2004, 126, 6193-6199.
  15. Size Dependence of Atomically Precise Gold Nanoclusters in Chemoselective Hydrogenation and Active Site Structure Gao Li †, De-en Jiang ‡, Santosh Kumar †, Yuxiang Chen †, and Rongchao Jin *† ACS Catal. , 2014, 4 (8), pp 2463–2469
  16. S. Malola, L. Lehtovaara, J. Enkovaara, H. Häkkinen, "Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters", ACS Nano 7, 10263 (2013).
  17. Hofmann, C. M. ; Essner, J. B. ; Baker, G. A. ; Baker, S. N. Nanoscale 2014, 6, 5425-5431.
  18. Chen, P. -C. ; Chiang, C. -K. ; Chang, H. -T. J. Nanopart. Res. 2013,15, 1-10.
  19. Yue, Y. ; Liu, T. -Y. ; Li, H. -W. ; Liu, Z. ; Wu, Y. Nanoscale 2012, 4, 2251-2254.
  20. Protein-directed synthesis of highly fluorescent gold nanoclusters Jianping Xie, Yuangang Zheng and Jackie Y. Ying JACS 2009 131 888-89
  21. Xie K JACS 2009 131 (3) 888
  22. turkevich et al
  23. M. P. de Jong, L. J. van Ijzendoorn, M. J. A. de Voigt, Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes, Appl. Phys. Lett. 77 (2000) 2255–2257.
  24. K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, C. C. Chang, Blocking reactions between indium-tin oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer, Appl. Phys. Lett. 80 (2002) 2788–2790.
  25. H. Yan, P. Lee, N. R. Armstrong, A. Graham, G. A. Evmenenko, P. Dutta, T. J. Marks, High-performance hole-transport layers for polymer light-emitting diodes. Implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices, J. Am. Chem. Soc. 127 (2005) 3172–3183.
  26. J. Ni, H. Yan, A. Wang, Y. Yang, C. L. Stern, A. W. Metz, S. Jin, L. Wang, T. J. Marks, J. R. Ireland, C. R. Kannewurf, MOCVD-Derived highly transparent, conductivezinc- and tin-doped indium oxide thin films: precursor synthesis, metastablephase film growth and characterization, and application as anodes in polymerlight-emitting diodes, J. Am. Chem. Soc. 127 (2005) 5613–5624. D. D. S. Fung, L. F. Qiao, W. C. H. Choy, C. D. Wang, W. E. I Sha, F. X. Xie and S. L. He J. Mater. Chem. 2011, 21, 16349-56
  27. Negishi, Y. ; Nobusada, K. ; Tsukuda, T. Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between gold(I)-Thiolate Complexes and Thiolate-Protected Gold Nanocrystals J. Am. Chem. Soc. 2005, 127, 5261– 5270[ACS Full Text ACS Full Text], [PubMed], [CAS]
  28. Zheng, J. ; Zhang, C. ; Dickson, R. Highly Fluorescent, Water-Soluble, Size-Tunable Gold Quantum Dots Phys. Rev. Lett. 2004, 93, 077402[CrossRef], [CAS]
  29. Negishi, Y. ; Sakamoto, C. ; Ohyama, T. ; Tsukuda, T. Synthesis and the Origin of the Stability of Thiolate-Protected Au 130 and Au 187 Clusters J. Phys. Chem. Lett. 2012, 3, 1624– 1628[ACS Full Text ACS Full Text], [CAS]
  30. Yu, Y. ; Chen, X. ; Yao, Q. ; Yu, Y. ; Yan, N. ; Xie, J. Scalable and Precise Synthesis of Thiolated Au 10–12, Au 15, Au 18, and Au 25 Nanoclusters via pH Controlled CO Reduction Chem. Mater. 2013, 25, 946– 952[ACS Full Text ACS Full Text], [CAS]
  31. Stamplecoskie, K. G. ; Kamat, P. V. Size-Dependent Excited State Behavior of Glutathione-Capped Gold Clusters and Their Light-Harvesting Capacity J. Am. Chem. Soc. 2014, 136, 11093– 11099[ACS Full Text ACS Full Text], [PubMed], [CAS]
  32. Wu, Z. ; Jin, R. On the Ligand's Role in the Fluorescence of Gold Nanoclusters Nano Lett. 2010, 10, 2568– 2573[ACS Full Text ACS Full Text], [PubMed], [CAS]
  33. Azcárate, J. C. ; Corthey, G. ; Pensa, E. ; Vericat, C. ; Fonticelli, M. H. ; Salvarezza, R. C. ; Carro, P. Understanding the Surface Chemistry of Thiolate-Protected Metallic Nanoparticles J. Phys. Chem. Lett. 2013, 4, 3127– 3138[ACS Full Text ACS Full Text], [CAS]
  34. Chen, W. -T. ; Hsu, Y. -J. ; Kamat, P. V. Realizing Visible Photoactivity of Metal Nanoparticles: Excited-State Behavior and Electron-Transfer Properties of Silver (Ag 8) Clusters J. Phys. Chem. Lett. 2012, 3, 2493– 2499[ACS Full Text ACS Full Text], [CAS]
  35. Negishi, Y. ; Iwai, T. ; Ide, M. Continuous Modulation of Electronic Structure of Stable Thiolate-Protected Au25 Cluster by Ag Doping Chem. Commun. 2010, 46, 4713– 4715[CrossRef], [PubMed], [CAS]
  36. Fields-Zinna, C. A. ; Crowe, M. C. ; Dass, A. ; Weaver, J. E. F. ; Murray, R. W. Mass Spectrometry of Small Bimetal Monolayer-Protected Clusters Langmuir 2009, 25, 7704– 7710[ACS Full Text ACS Full Text], [PubMed], [CAS]
  37. Kurashige, W. ; Niihori, Y. ; Sharma, S. ; Negishi, Y. Recent Progress in the Functionalization Methods of Thiolate-Protected Gold Clusters J. Phys. Chem. Lett. 2014, 4134– 4142[ACS Full Text ACS Full Text], [CAS]
Index Terms

Computer Science
Information Sciences

Keywords

Nanoclusters Gold Nanoparticles Organic Cells Current Density