CFP last date
20 January 2025
Reseach Article

Handwritten Marathi Consonants Recognition using Multilevel Classification

Published on August 2016 by C. H. Patil, S. M. Mali
National Conference on Digital Image and Signal Processing
Foundation of Computer Science USA
NCDISP2016 - Number 2
August 2016
Authors: C. H. Patil, S. M. Mali
89897bb2-7a74-467c-88b6-41e4651842f7

C. H. Patil, S. M. Mali . Handwritten Marathi Consonants Recognition using Multilevel Classification. National Conference on Digital Image and Signal Processing. NCDISP2016, 2 (August 2016), 21-30.

@article{
author = { C. H. Patil, S. M. Mali },
title = { Handwritten Marathi Consonants Recognition using Multilevel Classification },
journal = { National Conference on Digital Image and Signal Processing },
issue_date = { August 2016 },
volume = { NCDISP2016 },
number = { 2 },
month = { August },
year = { 2016 },
issn = 0975-8887,
pages = { 21-30 },
numpages = 10,
url = { /proceedings/ncdisp2016/number2/25856-1641/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 National Conference on Digital Image and Signal Processing
%A C. H. Patil
%A S. M. Mali
%T Handwritten Marathi Consonants Recognition using Multilevel Classification
%J National Conference on Digital Image and Signal Processing
%@ 0975-8887
%V NCDISP2016
%N 2
%P 21-30
%D 2016
%I International Journal of Computer Applications
Abstract

This paper presents approach for the recognition of handwritten Marathi consonants. In order to recognize handwritten Marathi consonants, a database of handwritten Marathi consonants is developed to carry recognition experiments. Problem of handwritten Marathi consonant recognition is simplified using multilevel classificationwhich improves recognition rate. Total 36 Marathi consonants are transformed using instance simplification technique into six sub classesdepending on special property of consonants. Suitable features are extracted from different sub classes and further classification is carried out using SVM and k-NN classifiers. We have used database of 7920 characters for testing and found recognition accuracy 78. 27% using SVM classifier and 73. 29% using k-NN classifier.

References
  1. R. Karwankar, A. S. Bhalchandra, "Stroke Pattern Identification In Devanagari Character Recognition", Published In International Journal Of Advanced Engineering & Application, Jan. 2010.
  2. Aarti Desai, Latesh Malik, "A Novel Approach To Thinning Of Devnagari Characters", International Journal Of Engineering Science And Technology (IJEST)ISSN : 0975-5462February 2011.
  3. Aarti Desai, Latesh Malik, Rashmi Welekar, "A New Methodology For Devnagari CharacterRecognition", Jmacademy Of It & Management Volume -1 Issue 1issn: 2229-6115january, 2011
  4. Ajmire P. E. , Warkhede S. E. , "Handwritten Marathi Character (Vowel) Recognition", Advances In Information Mining, ISSN: 0975–3265, Volume Issue 2, 2010, Pp-11-132010
  5. Anilkumar N. Holambe, Ravinder C. Thool, Sushilkumar N. Holambe, "Printed And Handwritten Character& Number Recognition OfDevanagariScript Using Gradient Features", Advances In Multimedia - An International Journal (AMIJ)
  6. Archana P. Jane, Mukesh. A. Pund, "Recognition Of Similar Shaped HandwrittenMarathi Characters Using Artificial NeuralNetwork", Global Journal Of Computer Science And TechnologyNeural & Artificial IntelligenceVolume 12 Issue 11 Version 1. 0 Year 2012Online ISSN: 0975-4172 & Print ISSN: 0975-43502012.
  7. Ashutosh Aggarwal, Rajneesh Rani, Renudhir, "Handwritten Devanagari Character Recognition Using Gradient Features", International Journal Of Advanced Research In Computer Science And Software Engineering Volume 2, Issue 5ISSN: 2277 128X41030
  8. Bikash Shaw, Swapan Kr. Parui, Malayappan Shridhar, "Offline Handwritten Devanagariword Recognition: A Holistic Approach BasedOn Directional Chain Code Feature And HMM", International Conference On Information Technologyieee ICIT 978-0-7695-3513-5/08 20082008
  9. Brijmohan Singh, Ankush Mittal, Debashis Ghosh, "An Evaluation Of Different Feature Extractors And ClassifiersFor Offline Handwritten Devnagari Character Recognition", Journal Of Pattern Recognition Research 2 (2011) 269-2772011
  10. C. Namrata Mahender, K. V. Kale, "Structured Based Feature Extraction Of Handwritten Marathi Word", International Journal Of Computer Applications (0975 – 8887)Volume 16– No. 6, February 20112011
  11. Chavan S. V. , Kale K. V. , Kazi M. M. , Rode Y. S. , "Recognition Of Handwritten Devanagari Compound Character A MomentFeature Based Approach", International Journal Of Machine IntelligenceIssn: 0975-2927 & E-Issn: 0975-9166, Volume 5, Issue 1, 2013, Pp. -421-425. 2013
  12. Dipak V. Koshti, Sharvari Govilkar, "Segmentation Of Touching Characters In HandwrittenDevanagari Script", UACEE International Journal Of Computer Science And Its Applications - Volume 2: Issue 2 [ISSN 2250 - 3765]
  13. G. G. Rajput S. M. Mali, "Fourier Descriptor Based Isolated Marathi HandwrittenNumeral Recognition", International Journal Of Computer Applications (0975 – 8887)Volume 3 – No. 4,40330
  14. G. G. Rajput, S. M. Mali, "Isolated Handwritten Marathi Numerals RecognitionBased Upon Fourier Descriptors AndFreeman Chain Code", International Journal Of Computational Intelligence Research ISSN 0973-1873 Volume 6, Number 2 (2010), Pp. 289–2982010
  15. Gaurav Agrawal, Kshitij, Amitabha Mukerjee, Nimit Kumar, "Handwritten Devanagari ScriptSegmentation Using Support Vector Machines"
  16. Holambe A. N. , Thool R. C. , Shinde U. B. And Holambe S. N. , "Brief Review Of Research On Devanagari Script", International Journal Of Computational Intelligence Techniques, ISSN: 0976–0466, Volume 1, Issue 2, 2010, Pp-06-092010
  17. J. Pradeep, E. Srinivasan, S. Himavathi, "Diagonal Feature Extraction Based Handwritten Character System Using Neural Network", International Journal Of Computer Applications (0975 – 8887) Volume 8– No. 9, October 2010
  18. Karbhari V. Kale, , Prapti D. Deshmukh Shriniwas V. Chavan, Majharoddin M. Kazi, , Yogesh S. Rode, "Zernike Moment Feature Extraction For HandwrittenDevanagari (Marathi) Compound Character Recognition", (IJARAI) International Journal Of Advanced Research In Artificial Intelligence, Vol. 3, No. 1, 2014
  19. M. Hanmandlu, O. V. Ramana Murthy, Vamsi Krishna Madasu, "Fuzzy Model Based Recognition Of Handwritten Hindi Characters", Digital Image Computing Techniques And Applications 0-7695-3067-2/07 2007 IEEEDOI 10. 1109/DICTA. 2007. 82IEEE2007
  20. Mahesh Jangid, Devanagari "Isolated Character RecognitionBy Using Statistical Features", International Journal On Computer Science And Engineering (IJCSE) Vol. 3 No. 6 ISSN : 0975-3397 40695
  21. Mansi Shah, Gordhan B Jethava, "A Literature Review On Hand Written Character Recognition", Indian Streams Research JournalVol -3 , Issue –2, March. 2013 Issn:-2230-78502013
  22. Vinaya. S. Tapkir, Sushma. D. Shelke, "OCR For Handwritten Marathi Script", International Journal Of Scientific & Engineering Research Volume 3, Issue 8, August-2012 ISSN 2229-55182012
  23. N. B. Mapari, A. L. Telang, R. K. Rajbhure, "A Study Of Devnagri Handwritten Character Recognition System", International Journal Of Computer Science And Applications Vol. 4, No. 2, June2011 ISSN: 0974-10032011
  24. Neeraj Pratap, Shwetank Arya, "A Review Of Devnagari Character Recognition From Past To Future", International Journal Of Computer Science And Telecommunications Volume 3, Issue 6, June 2012
  25. Neha Sahu, R. K. Rathy, Indu Kashyap, "Survey And Analysis Of Devnagari CharacterRecognition Techniques Using Neural Networks", International Journal Of Computer Applications (0975 – 888) Volume 47– No. 15, June 2012
  26. O. V. Ramana Murthy, M. Hanmandlu, "Zoning Based Devanagari Character Recognition", International Journal Of Computer Applications (0975 – 8887)Volume 27– No. 4, August 2011
  27. P. E. Ajmire, RV Dharaskar, V M Thakare, "A Comparative Study Of Handwritten Marathi Character Recognition", National Conference On Innovative Paradigms In Engineering & Technology (NCIPET-2012)Proceedings Published By International Journal Of Computer Applications (IJCA)2012
  28. Ratnashil N Khobragade, Nitin A. Koli, Mahendra S Makesar, "A Survey On Recognition Of Devnagari Script", International Journal Of Computer Applications & Information TechnologyVol. II, Issue I, January 2013 (ISSN: 2278-7720)41275
  29. S. Arora, D. Bhattacharjee, M. Nasipuri , D. K. Basu, M. Kundu, L. Malik, "Study Of Different Features On Handwritten Devnagari Character", Second International Conference On Emerging Trends In Engineering And Technology, ICETET-092009
  30. S. Arora, D. Bhattacharjee, M. Nasipuri, D. K. Basu, M. Kundu, "Recognition Of Non-Compound Handwritten Devnagari Characters Using A Combination Of MLP And MInimum Edit Distance", International Journal Of Computer Science And Security (IJCSS),Volume (4) : Issue ( 1)
  31. Sandhya Arora, Debotosh Bhattacharjee, Mita Nasipuri,Dipak Kumar Basu, Mahantapas Kundu, "Combining Multiple Feature Extraction TechniquesFor Handwritten Devnagari Character Recognition", 2008 IEEE Region 10 Colloquium And The Third ICIIS, Kharagpur, INDIA December 8-10. 2008
  32. Sushama Shelke, Shaila Apte, "A Multistage Handwritten Marathi Compound CharacterRecognition Scheme Using Neural Networks And Wavelet Features, International Journal Of Signal Processing", Image Processing And Pattern RecognitionVol. 4, No. 1, March 2011
  33. Veena Bansal, R. M. K. Sinha, "Integrating Knowledge Sources In Devanagari Text Recognition System", IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 4, 1083–442736708
  34. Veena Bansal And R. M. K. Sinha, "Segmentation Of Touching Characters In Devanagari"
  35. Veena Bansal And R. M. K. Sinha, "SEGMENTATION OF TOUCHING AND FUSEDDEVANAGARI CHARACTERS".
  36. Vikas J Dongre, Vijay H Mankar, "A Review Of Research On Devnagari Character Recognition",International Journal Of Computer Applications (0975 – 8887)Volume 12– No. 2, November 2010.
Index Terms

Computer Science
Information Sciences

Keywords

Marathi Consonents Multilevel Classification Svm Knn Pattern Recognition.