CFP last date
20 February 2025
Reseach Article

Measurement of Physical Properties of Anodized Al2O3 FESEM Images

Published on September 2018 by Parashuram Bannigidad, Jalaja Udoshi, C. C. Vidyasagar
National Conference on Computer Science and Information Technology
Foundation of Computer Science USA
NCCSIT2017 - Number 1
September 2018
Authors: Parashuram Bannigidad, Jalaja Udoshi, C. C. Vidyasagar

Parashuram Bannigidad, Jalaja Udoshi, C. C. Vidyasagar . Measurement of Physical Properties of Anodized Al2O3 FESEM Images. National Conference on Computer Science and Information Technology. NCCSIT2017, 1 (September 2018), 8-12.

@article{
author = { Parashuram Bannigidad, Jalaja Udoshi, C. C. Vidyasagar },
title = { Measurement of Physical Properties of Anodized Al2O3 FESEM Images },
journal = { National Conference on Computer Science and Information Technology },
issue_date = { September 2018 },
volume = { NCCSIT2017 },
number = { 1 },
month = { September },
year = { 2018 },
issn = 0975-8887,
pages = { 8-12 },
numpages = 5,
url = { /proceedings/nccsit2017/number1/29981-7006/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 National Conference on Computer Science and Information Technology
%A Parashuram Bannigidad
%A Jalaja Udoshi
%A C. C. Vidyasagar
%T Measurement of Physical Properties of Anodized Al2O3 FESEM Images
%J National Conference on Computer Science and Information Technology
%@ 0975-8887
%V NCCSIT2017
%N 1
%P 8-12
%D 2018
%I International Journal of Computer Applications
Abstract

The objective of the proposedstudy is to develop an automated tool to determine the effect of time onnanopore structures. The designed tool extracts the nanopores from the Al2O3 FESEM images and computes their geometrical and statistical features. These valuesare further used to measure the variance of wall thickness and nanopore size which depend on four prominent anodizing parameters, namely, concentration (%), time (min), temperature (oC) and voltage (V). It is found that the structure and regularity of the nanopore arrangement is significantly improved by increasing anodizing time (min) at constant concentration (%), temperature (oC) and voltage (V). It is also observed that, after the anodizing process at every interval of time there is a significant decrease in wall thickness from 58nm to 41nm and increase in nanoporesize from 32nm to 78 nm. The experimental results are compared with the manual results obtained by the chemical expert and demonstrate the efficacy of the proposed method.

References
  1. Zhong, Z. H. , Qian, F. , Wang, D. L. , Lieber, C. M. Synthesis of P-Type Gallium Nitride Nanowires forElectronic and Photonic Nanodevices. Nano Lett. 2003, 3, 343-346.
  2. Qian, F. , Gradecak, S. , Li, Y. , Wen, C. Y. , Lieber,C. M. (2005). Core/Multishell NanowireHeterostructures as Multicolor, High-Efficiency Light-Emitting Diodes. Nano Lett. 5, 2287-2291.
  3. Fan, Z. Y. , Wang, D. W. , Chang, P. C. , Tseng, W. Y. , Lu, J. G. (2004). ZnO Nanowire Field Effect Transistor And Oxygen Sensing Property. Appl. Phys. Lett. 85, 5923-5937.
  4. Hochbaum, A. I. , Chen, R. K. , Delgado, R. D. ,Liang, E. C. , Garnett, W. J. , Najarian, M. ,Majumdar, A. , Yang, P. D. (2008). EnhancedThermoelectric Performance Of Rough Siliconnanowires. Nature, 451, 163-167.
  5. Wang, Z. L. , Song, J. H. (2006). PiezoelectricNanogenerators Based On Zinc Oxide NanowireArrays. Science, 312, 242-246.
  6. Fan, Z. Y. , Razavi, H. , Do, J. W. , Moriwaki, A. ,Ergen, O. , Chueh, Y. L. , Leu, P. W. , Ho, J. C. ,Takahashi, T. , Reichertz, L. A. , Neale, S. , Yu, K. ,Wu, M. , Ager, J. W. , Javey, A. (2009). Three-Dimensional Nanopillar-Array Photovoltaics On Low-Cost And Flexible Substrates. Nature Mater. 8, 648-653.
  7. Stiebig, H. , Senoussaoui, N. , Zahren, C. , Haase, C. ,Muller, J. Prog. (2006). Silicon Thin-Film Solar CellsWith Rectangular-Shaped Grating Couplers. Photovoltaics, 14, 13-24.
  8. Masuda, H. , Fukuda, K. (1995). Ordered MetalNanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science,268, 1466-1468.
  9. Banerjee, P. , Perez, I. , Henn-Lecordier, L. , Lee, S. B. , Rubloff, G. W. (2009). Nanotubular metalinsulator-metal capacitor arrays for energy storage. Nat. Nanotechnol. 4, 292-296.
  10. Liang, Y. , Schwab, M. G. , Zhi, L. , Mugnaioli, E. ,Kolb, U. , Feng, X. , Meullen, K. J. (2010). DirectAccess to Metal or Metal Oxide Nanocrystals Integrated with One-dimensional Nanoporous Carbonsfor Electrochemical Energy Storage. Am. Chem. Soc. 132, 15030-15037.
  11. Min Hyung, L. , Namsoo, L. , Daniel Ruebusch, J. ,Jamshidi, A. , Kapadia, R. , Lee, R. , Joon Seok, T. ,Takei, K. , Young Cho, K. , Fan, Z. , Jang, H. , Wu, M. , Cho, G. , Javey, A. (2011). Roll-to-Roll Anodizationand Etching of Aluminum Foils for High-ThroughputSurface Nanotexturing. Nano Lett. 11, 3425-3430.
  12. Kumar, G. , Tang, H. X. , Schroers, J. (2009). Nanomoulding with Amorphous Metals Nature, 457, 868-872.
  13. Lyvers, D. P. , Moon, J. M. , Kildishev, A. V. , Shalaev, V. M. , Wei, A. (2008). Gold NanorodArrays as Plasmonic Cavity Resonators. ACSNano, 2, 2569.
  14. Vlassiouk, I. , Krasnoslobodtsev, A. , Smirnov, S. ,Germann, M. (2008). Direct detection and separationof DNA using nanoporous alumina filters. Langmuir, 2004, 20, 9913-9915.
  15. Diggle, J. W. , Downie, T. C. , Goulding, C. W. (1969). Anodic oxide films on aluminum Chem. Rev. 69, 365-405.
  16. Feiyue, L. , Zhang, R. , Metzger, M . (1998). On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide. Chem. Mater. 10, 2470-2480.
  17. Shwetabh, S. (2013). Microscopic Image Analysis ofNanoparticles by Edge Detection Using and Colony Optimization. J. Computer Eng. 11, 84-89.
  18. Fisker, R. , Carstensen, J. M. , Hanshen, M. F. ,Bodker, F. , Morup, S. (2000). Estimation of nanoparticle size distributions by image analysis. J. Nanoparticle Res. 2, 267-277.
  19. Rafael, C. G. , Richard, E. W. (2002). Digital Image Processing; Pearson Education Asia
  20. Parashuram Bannigidad, C. C. Vidyasagar (2015), Effectof Time on Anodized Al2O3 Nanopore FESEM Imagesusing Digital Image Processing Techniques: A Study onComputational Chemistry IJETTCS, ISSN 2278-6856,4, 3, 15-22.
  21. Paisarn Muneesawang, Chitnarong Sirisathitkul (2015)Size Measurement of Nanoparticle Assembly UsingMultilevel Segmented TEM Images, Journal onNanomaterials, Hindawi Publishing Corporation, Article ID 790508, 8.
  22. Soham De, Nupur Biswas, Abhijit Sanyal, Pulak Ray andAlokmay Datta (2012) Detecting Subsurface CircularObjects from Low Contrast Noisy Images: Applicationsin Microscope Image Enhancement, IJCEACIE, 6, 7.
  23. Ashish Kumar, Priyadarshni, Preeti Kaushik (2014) A KmeansBased Methodology for Evaluation of shapeparameters for nano-particles, IJARCSSE, 4, 1.
  24. C. C. Vidyasagar, ParashuramBannigidad, H. B. Muralidhara (2016) Influence of anodizing time onporosity of nanopore structures grown on flexible TLCaluminium films and analysis of images using MATLAB software, Adv. Mater. Lett. VBRI Press, 7(1), 71-77.
Index Terms

Computer Science
Information Sciences

Keywords

Aluminium Nanopore Computational Chemistry Nanopore Image Analysis Image Segmentation Fesem Nanomaterial