CFP last date
20 January 2025
Reseach Article

Computational Techniques: Taking Organic Photochemistry to Cyberspace

Published on September 2014 by Mamta Garg, Sunita Parihar, Chetna Gomber
National Conference on Advances in Technology and Applied Sciences
Foundation of Computer Science USA
NCATAS - Number 1
September 2014
Authors: Mamta Garg, Sunita Parihar, Chetna Gomber
ed3b4643-21a3-48ca-ba70-0afd167a3123

Mamta Garg, Sunita Parihar, Chetna Gomber . Computational Techniques: Taking Organic Photochemistry to Cyberspace. National Conference on Advances in Technology and Applied Sciences. NCATAS, 1 (September 2014), 13-15.

@article{
author = { Mamta Garg, Sunita Parihar, Chetna Gomber },
title = { Computational Techniques: Taking Organic Photochemistry to Cyberspace },
journal = { National Conference on Advances in Technology and Applied Sciences },
issue_date = { September 2014 },
volume = { NCATAS },
number = { 1 },
month = { September },
year = { 2014 },
issn = 0975-8887,
pages = { 13-15 },
numpages = 3,
url = { /proceedings/ncatas/number1/17942-1604/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 National Conference on Advances in Technology and Applied Sciences
%A Mamta Garg
%A Sunita Parihar
%A Chetna Gomber
%T Computational Techniques: Taking Organic Photochemistry to Cyberspace
%J National Conference on Advances in Technology and Applied Sciences
%@ 0975-8887
%V NCATAS
%N 1
%P 13-15
%D 2014
%I International Journal of Computer Applications
Abstract

Photochemistry deals with chemical reactions taking place in the presence of light. Immense amount of solar energy received from sun can be utilized for these reactions. The computational investigation of realistic models of organic compounds is becoming a standard practice nowadays. Computer programs can mimic the process of photochemical reactions and predict the outcome of such reactions and thereby, eliminate the need of some lab testing. Current review describes the photochemical reaction from absorption of energy to formation of photoproduct, using computational techniques such as Gaussian 94, MOLCAS, CAS-SCF/MP2 etc. available in standard quantum chemistry packages. This makes computer an important and inseparable tool for chemists and many industrial processes.

References
  1. A. Gilbert and J. Baggott, Essentials of Molecular Photochemistry, Blackwell Scientific Publications, Oxford, 1991
  2. J. Michl and V. Bonacic-Koutecky, Electronic Aspects of Photochemistry, Wiley, New York, 1990
  3. M. Klessinger and J. Michl, Excited States and Photochemistry of Organic Molecules, VCH Publishers, New York, 1994.
  4. B. O. Roos, in Adv. Chem. Phys. (Ab Initio Methods in Quantum Chemistry-II), K. P. Lawley, Ed. , Wiley, New York,. The Complete Active Space Self Consistent Field Method and its Applications in Electronic Structure Calculations,Vol. 69 , pp. 399-446,1987
  5. M. Desouter-Lecomte and J. C. Lorquet, J. Chem. Phys. , Nonadiabatic Interactions in Unimolecular Decay. IV. Transition Probability as a Function of the Massey Parameter, 71, 4391 ,1979.
  6. Gaussian 94, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson,J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz,J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. De Frees,J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople,Gaussian, Inc. , Pittsburgh PA, 1995.
  7. MOLCAS, Version 4. K. Andersson, M. R . A. Blomberg, M. P. Fülscher, G. Karlström, R. Lindh, P. -Å. Malmqvist, P. Neogrády, J. Olsen, B. O. Roos, A. J. Sadlej, M. Schütz, L. Seijo, L. Serrano-Andrés, P. E. M. Siegbahn, and P. -O. Widmark, Lund University, Sweden,1997
  8. H. Dachsel, R. Shepard, J. Nieplocha, and R. J. Harrison, J. Comput. Chem. A Massively Parallel Multireference Configuration Interaction Program: The Parallel COLUMBUS Progra, 18,430 ,1997
  9. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. J. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery J. Comput. Chem. General Atomicand Molecular Electronic-Structure System, 14, 1347,1993
  10. J. J. McDouall, K. Peasley, and M. A. Robb, Chem. Phys. Lett. , A Simple MC-SCF Perturbation Theory: Orthogonal Valence Bond Moller-Plesset 2 (OVB-MP2). 148, 183,1988
  11. K. Andersson, P. A. Malmqvist, and B. O. Roos, J. Chem. Phys. , 2nd-Order Perturbation-Theory with a Complete Active Space Self-Consistent Field Reference Function,96, 1218, 1992
  12. I. J. Palmer,I. N . Ragazos, F. Bernardi, M. Olivucci, M. A. Robb, J. Am. Chem. Soc. , 115, 673-682, 1993
Index Terms

Computer Science
Information Sciences

Keywords

Photochemistry Organic Compounds Absorption Photoproduct Computational Techniques