National Symposium on Modern Information and Communication Technologies for Digital India |
Foundation of Computer Science USA |
MICTDI2016 - Number 2 |
December 2016 |
Authors: Bharat Bhushan Sharma, Munna Khan |
Bharat Bhushan Sharma, Munna Khan . Acoustic Source Perception of Human under Noise: A Comparative Assessment. National Symposium on Modern Information and Communication Technologies for Digital India. MICTDI2016, 2 (December 2016), 1-4.
Acoustic Source Perception is capability of human to classify incoming sensory information from the surroundings. Introduction of noise affects the Acoustic Source Perception (ASP) and also decrease the concentration of human subject for a particular task. Thus, an effort has been made to evaluate impact of introduction of noise on ASP by human subjects. A device has been developed using various electronic components to generate different frequencies of sound signal. Various sets of experiments were planned for exposure of sound levels with different frequencies range from 4 KHz to 10 KHz with fixed interval of 0. 5 KHz. Total 20 human volunteers (10 Males and 10 Females) were asked to score or rate quality of sound perceived and provides their responses in a tabulated form. The 15 subjects have age range from 22 to 32 year and 5 subjects of 50 years plus and none of them have issue of abnormal or defective hearing. Duration of 2 minutes exposure is fixed during experiments on the subjects and performed under noise free environment and with white noise of 30dB. The comparative analysis was done for both the cases. The ASP of 15 subjects was assessed as 95 % while ASP of other 5 subjects as 88% under noise free environment. The presence of noise reduced ASP of 15 subjects to 85% and ASP of other 5 subjects to 77 %. Comparative analysis shows the ASP of human subjects is reduced to 10% with white noise of 30dB as compared to ASP of human subject under noise free environment. The obtained result show that older subjects provides low response to ASP while younger subjects give high ASP in both cases of noise free with frequency variation and induced noise environments with frequency variation.