CFP last date
20 December 2024
Reseach Article

Irregular Circular Fractal Slot Antenna for Dual Wideband Applications

Published on None 2011 by Sujeet Kumar Rai, Yogesh Kumar Choukiker, S K Behera
International Symposium on Devices MEMS, Intelligent Systems & Communication
Foundation of Computer Science USA
ISDMISC - Number 3
None 2011
Authors: Sujeet Kumar Rai, Yogesh Kumar Choukiker, S K Behera
3b56b386-76a2-40bc-a21c-60aaf873fbd7

Sujeet Kumar Rai, Yogesh Kumar Choukiker, S K Behera . Irregular Circular Fractal Slot Antenna for Dual Wideband Applications. International Symposium on Devices MEMS, Intelligent Systems & Communication. ISDMISC, 3 (None 2011), 1-4.

@article{
author = { Sujeet Kumar Rai, Yogesh Kumar Choukiker, S K Behera },
title = { Irregular Circular Fractal Slot Antenna for Dual Wideband Applications },
journal = { International Symposium on Devices MEMS, Intelligent Systems & Communication },
issue_date = { None 2011 },
volume = { ISDMISC },
number = { 3 },
month = { None },
year = { 2011 },
issn = 0975-8887,
pages = { 1-4 },
numpages = 4,
url = { /proceedings/isdmisc/number3/3453-isdm045/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Symposium on Devices MEMS, Intelligent Systems & Communication
%A Sujeet Kumar Rai
%A Yogesh Kumar Choukiker
%A S K Behera
%T Irregular Circular Fractal Slot Antenna for Dual Wideband Applications
%J International Symposium on Devices MEMS, Intelligent Systems & Communication
%@ 0975-8887
%V ISDMISC
%N 3
%P 1-4
%D 2011
%I International Journal of Computer Applications
Abstract

A compact CPW-fed fractal circle monopole antenna with dual wideband is presented for simultaneously satisfying wireless local area network (WLAN) for 2.4/5.2/5.8 GHz application. The antenna consists of irregular shape circles based on the Descartes circle theorem. The simulated -10 dB bandwidth for return loss is from 2.04 to 3.35 GHz and 4.96 to 5.9 GHz, covering all the 2.4/5.2/5.8 GHz WLAN Bands obtained. It is observed that the gain of proposed antenna for 2.4 GHz and 5.2 GHz is 3.606 dBi and 5.96 dBi respectively. This antenna gives stable monopole-like radiation patterns.

References
  1. KUO Y.-L., WONG K.-L.: ‘Printed double-T monopole antennafor 2.4/5.2 GHz dual band WLAN operations’, IEEE Trans. Antennas Propag., 2003, 51, (9), pp. 2187–2192)
  2. LIN C.C., LEE G.Y., WONG K.L.: ‘Surface mount dual loop antenna for 2.4/5 GHz WLAN operations’, Electr. Lett., 2003, 39, pp. 1302–1304
  3. NASHAAT D., ELSADEK H.A., GHALI H.: ‘Dual band reduced size PIFA antenna with U-slot for blue tooth and WLAN operations’. Proc. IEEE Antennas and Propagation SocietyInternational symposium, USA, 2003, vol. 2, pp. 962–965
  4. SUH Y.H., CHANG K.: ‘Low cost microstrip fed dual frequency printed dipole antenna for wireless communications’, Electr. Lett., 2000, 36, pp. 1177–1179
  5. SU C.M., CHEN H.T., WONG K.L.: ‘Printed dual band dipole antenna with U-slot arms for 2.4/5.2 GHz WLAN operation’, Electr. Lett., 2004, 38, pp. 1308–1309
  6. Yang, F. , et al., “wide band E-shaped patch antenna for wireless communication”, IEEE trans. Antennas Propag., Vol. 49, 1094-1100, 2001
  7. WU J.W., HSIAO H.M., LU J.H., CHANG S.H.: ‘Dual broad band design of rectangular slot antenna for 2.4 and 5 GHz wireless’, IEE Electron. Lett., 2004, 40, (23), pp. 1461–1463
  8. ZHANG Z., ISKANDER M.F., LANGER J.C., MATHEWS J.: ‘Dual-band WLAN dipole antenna using an internal matching circuit’, IEEE Trans. Antennas Propag., 2005, 53, (5), pp. 1813–1818
  9. Werner D.H., Mittra R:, “Frontier of electromagnetic”, (Wiley-IEEE Press, Newyork, 1999)
  10. H.Jones, , et al., “Fractals and chaos”, A.J.Crilly, R.A.Earnsshaw, and H.Jones, Eds. Newyork: Springer-Verleg, 1990.
  11. B.B.Mandelbort, “ The fractal geometry of nature” San Francisco, C A: Freeman, 1983
  12. H.O.Peitgen., et al., “ Chaos and Fractals”, Newyork: springer-Verlag, 1990.
  13. Dau-chyrh Cang, Bing-Hao Zeng, Ji-Chyun liu, “CPW-Fed circular fractal slot antenna design for Dual-band Application”, IEEE Trans on antenna and propg., Vol. 56. No. 12, Dsec 2008
  14. J. C. Liu, D. C. Lou, C. Y. Liu, C. Y. Wu, and T. W. Soong, “Precise determinations of the CPW-fed circular fractal slot antenna,” Microw. Opt. Technol. Lett., vol. 48, no. 8, pp. 1586–1592, Aug. 2006.
  15. J.C. Lagarias, C.L. Mallows, and A. Wilks, Beyond the Descartes circle theorem, Amer Math 109 (2002), 338–361.
  16. S.-W. Qu, C. Ruan, and B.-Z. Wang, “Bandwidth enhancement of wide-slot antenna fed by CPW and microstrip line,” IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 15–17, 2006.
  17. E. S. Angelopoulos, A. Z. Anastopoulos, D. I. Kaklamani, A. A. Alexandridis, F. Lazarakis, and K. Dangakis, “Circular and elliptical CPW-Fed slot and microstrip-fed antennas for ultrawide-band applications,” IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 294–297, 2006.
  18. Y.-C. Lin and K.-J. Hung, “Compact ultrawide-band rectangular aperture antenna and band-Notched designs,” IEEE Trans. Antennas Propag., vol. 54, no. 11, pp. 3075–3081, Nov. 2006.
  19. P. Li, J. Liang, and X. Chen, “Study of printed elliptical/circular slot antennas for ultrawide-band applications,” IEEE Trans. Antennas Propag., vol. 54, no. 6, pp. 1670-1675, Jun. 2006.
Index Terms

Computer Science
Information Sciences

Keywords

Dual wide band Circular Antenna Fractal Antenna CPW-fed Descartes Circle Theorem