CFP last date
20 January 2025
Reseach Article

Measurement of Plasma Parameters using Digital Image Processing Technique

Published on None 2011 by Abhisek Kodal, Soham Majumder, Utpal Deka
International Symposium on Devices MEMS, Intelligent Systems & Communication
Foundation of Computer Science USA
ISDMISC - Number 2
None 2011
Authors: Abhisek Kodal, Soham Majumder, Utpal Deka
1e3d29e7-c850-4783-99ff-c6612128f351

Abhisek Kodal, Soham Majumder, Utpal Deka . Measurement of Plasma Parameters using Digital Image Processing Technique. International Symposium on Devices MEMS, Intelligent Systems & Communication. ISDMISC, 2 (None 2011), 22-27.

@article{
author = { Abhisek Kodal, Soham Majumder, Utpal Deka },
title = { Measurement of Plasma Parameters using Digital Image Processing Technique },
journal = { International Symposium on Devices MEMS, Intelligent Systems & Communication },
issue_date = { None 2011 },
volume = { ISDMISC },
number = { 2 },
month = { None },
year = { 2011 },
issn = 0975-8887,
pages = { 22-27 },
numpages = 6,
url = { /proceedings/isdmisc/number2/3452-isdm041/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Symposium on Devices MEMS, Intelligent Systems & Communication
%A Abhisek Kodal
%A Soham Majumder
%A Utpal Deka
%T Measurement of Plasma Parameters using Digital Image Processing Technique
%J International Symposium on Devices MEMS, Intelligent Systems & Communication
%@ 0975-8887
%V ISDMISC
%N 2
%P 22-27
%D 2011
%I International Journal of Computer Applications
Abstract

Digital Image Processing Technique (DIPT) is a widely used technique for image processing activities in digital communication. Its use as diagnostic tool is in recent use in many experimental researches, where emission spectroscopy plays a dominant role. In this work, we have projected DIPT as a low cost and non invasive probing technique to measure different physical parameters like energy, temperature and density of a DC Glow Discharge Plasma. The radiative emission from DC Glow Discharge Plasma is normally in the visible range along with some infrared and ultraviolet emissions. The frequency of such radiations indicates the energy of the radiation. Different radiative processes in the plasma are responsible for the frequency band of the emission. The spectral distribution depends upon the homogeneity of the plasma also. By analyzing the image of plasma we can infer the spectral distribution due to emission from different regions of the plasma. Here, we have evaluated the matrix of rgb values of pixels of the plasma image. We have developed an approximate relation of the rgb to the wavelength of the spectra. The corresponding frequency matrix is then worked out from the derived wavelength matrix. Then considering a local thermodynamic equilibrium, the energy distribution matrix, which depends upon the local atomic processes, is calculated using the above frequency matrix. The surface plot of the temperature, density and the energy of the plasma have been shown in this work.

References
  1. R. C. Gonzalez, R. E. Woods and S. L. Eddins, Digital Image Processing Using Matlab, 1st edn., Pearson, 2004.
  2. K. N. Plataniotis, A. N.Venetsanoupoulos, Color Image Processing And Applications, Springer, Berlin Heidelberg, 2000.
  3. O. G Glotov, “Image Processing of the Fractal Aggregates Composed of Nanoparticles”, Russ. J. Phys. Chem. A, vol. 82, pp. 2213–2218, 2008.
  4. Gilles Aubert and Jean-Fran¸cois Aujol, “Modeling Very Oscillating Signals. Application to Image Processing”, Appl. Math. Optim. OF1–OF20, 2004.
  5. V. Fonov, S. Fonov, G. Jones and J. Crafton, “Image processing technique for shear stress optical measurements”, presented in 11th International Symposium on Flow Visualization, University of Notre Dame, Notre Dame, Indiana, USA, August 9-12, 2004.
  6. D. B. Sinars, L. Gregorian, D. A. Hammer and Y. Maron, “Plasma Imaging and Spectroscopy Diagnostics Developed on 100–500-kA Pulsed Power Devices”, in the Proceedings of the IEEE, vol. 92, pp. 1110-1121, 2004.
  7. N. R. Pal, S. K. Pal, “A review of image segmentation techniques”, Pattern Recogn., vol. 26, pp. 1277-1294, 1993.
  8. J. C. Martínez Oliveros, et. al, “Imaging Spectroscopy of a White-Light Solar Flare”, Solar Phys., online doi. 10.1007/s11207-010-9696-z, 2011.
  9. M. J. Aschwanden, “Image Processing Techniques and Feature Recognition in Solar Physics”, Solar Phys., vol. 262, pp. 235-275, 2010.
  10. M. F. M. Costa, “Application of Image Processing to the Characterisation of Nanostructures”, Rev. Adv. Mat. Sci. vol. 6, pp. 12-20, 2004.
  11. W. X. Wang, L. Li and Z. Yuan, “Ceramic Material Surfaces Characterization by Image Technique”, IEEE, vol. 6, pp. 446-449, 2006.
  12. J.C. Riaño-Rojas, E. Restrepo-Parra, F.A. Prieto-Ortiz and J.J. Olaya-Florez,, “On the application of digital image processing to surfaces of different nitride coatings”, Superlattice Microst., vol. 43, pp. 564-569, 2008.
  13. A. B. Flores, L. A. Robles, M. O. Arias and J. A. Ascencio, “Small metal nanoparticle recognition using digital image analysis and high resolution electron microscopy”, Micron vol. 34, pp. 109-118, 2003.
  14. R. Venkataraman, et. al., “Image processing and statistical analysis of microstructures of as plasma sprayed Alumina–13 wt.% Titania coatings”, Surf. Coat. Tech., vol. 4, pp. 3691-3700, 2006.
  15. Y. P. Raizer, Gas Discharge Physics, Springer-Verlag, 1987.
  16. W. A. Hareland and R. J. Buss, “Distribution of Excited Species in Plasmas by Monochromatic Imaging”, IEEE Trans. Plasma Sci., vol. 24, pp. 117-118, 1996.
  17. U. Kinrot, S. Goldsmith, and R. L. Boxman, “Monochromatic Imaging of Cathodic Arc Plasma”, IEEE Trans. Plasma Sci., vol. 24, pp. 71-72, 1996.
  18. D. Samsonov and J. Goree,, “Line Ratio Imaging of a Gas Discharge”, IEEE Trans. Plasma Sci., vol. 27, pp. 76-77, 1999.
  19. A. B. Murphy, “Color Separation in an Argon–Helium Arc Due to Radiative Properties and Demixing”, IEEE Trans. Plasma Sci., vol. 27, pp. 30-31, 1999.
  20. Z. Yinjia, et. al. “Imaging System and Plasma Imaging on HL-2A Tokamak”, Plasma Sci. Technol., vol. 6, pp. 2353, 2004.
  21. T. Iwao, A. Nemoto, M. Yumoto, and T. Inaba, “Plasma Image Processing of High Speed Arc Movement in a Rail-Gun”, IEEE Trans. Plasma Sci., vol. 33, pp. 430-431, 2005.
  22. O. Norifumi, K. Kazuo, “A Study of Plasma Jet Characteristics Using Image Processing Techniques”, J. Visual. Soc. Jpn., vol. 25, pp. 59-62, 2005.
  23. N. A. Fomin, “Diagnostics of Rapidly Proceeding Processes in Fluid and Plasma Mechanics”, J. Eng. Phys. Thermophys., vol. 81, pp. 68-81, 2008.
  24. V. Colombo, A. Concetti, E, Ghedini, S, Dallavalle, and M, Vancini, “High-Speed Imaging of Pilot Arcing and Piercing in PAC”, IEEE Trans. Plasma Sci., vol. 36, pp. 1042-1043, 2008.
  25. O. Lischtschenko, K. Bystrov, G. De Temmerman, J. Howard, R. J. E. Jaspers, and R. König, “Density measurements using coherence imaging spectroscopy based on Stark broadening”, Rev. Sci. Instrum., vol. 81, pp. 10E521, 2010.
  26. A. Salar Elahi and M. Ghoranneviss, “A Novel Optical Technique Based on Image Processing for Determination of Tokamak Plasma Displacement”, J. Fusion Energ., online doi. 10.1007/s10894-010-9359-y, 2010.
  27. J. Walker, http://www.fourmilab.ch/documents/specrend/
  28. H. R. Griem, Plasma Spectroscopy, Mc Graw Hill, New York, 1964.
  29. S. Jha, et. al, “Experimental investigation into the effect of Adhesion Properties of High Performance Polymer Modified by Atmospheric Pressure Plasma and Low Pressure Plasma: A comparative Study” J Appl Polym Sci. vol. 118, pp. 173-179, 2010.
Index Terms

Computer Science
Information Sciences

Keywords

Digital Image Processing Plasma Probing Technique Glow Discharge Plasma Plasma parameters State of Ionization of plasma