CFP last date
20 December 2024
Reseach Article

Hhnorm Computation for Fractional Order Control System

Published on April 2013 by Suman Suri, Mukesh D. Patil, Vishwesh A. Vyawahare
International Conference and Workshop on Emerging Trends in Technology 2013
Foundation of Computer Science USA
ICWET2013 - Number 3
April 2013
Authors: Suman Suri, Mukesh D. Patil, Vishwesh A. Vyawahare
cd21a715-bbeb-4a0b-b44e-fc810b755081

Suman Suri, Mukesh D. Patil, Vishwesh A. Vyawahare . Hhnorm Computation for Fractional Order Control System. International Conference and Workshop on Emerging Trends in Technology 2013. ICWET2013, 3 (April 2013), 30-33.

@article{
author = { Suman Suri, Mukesh D. Patil, Vishwesh A. Vyawahare },
title = { Hhnorm Computation for Fractional Order Control System },
journal = { International Conference and Workshop on Emerging Trends in Technology 2013 },
issue_date = { April 2013 },
volume = { ICWET2013 },
number = { 3 },
month = { April },
year = { 2013 },
issn = 0975-8887,
pages = { 30-33 },
numpages = 4,
url = { /proceedings/icwet2013/number3/11347-1366/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Conference and Workshop on Emerging Trends in Technology 2013
%A Suman Suri
%A Mukesh D. Patil
%A Vishwesh A. Vyawahare
%T Hhnorm Computation for Fractional Order Control System
%J International Conference and Workshop on Emerging Trends in Technology 2013
%@ 0975-8887
%V ICWET2013
%N 3
%P 30-33
%D 2013
%I International Journal of Computer Applications
Abstract

In this paper, we propose two tools for fractional systemsH? norm computation; one is based on an extension of widelyused tools designed for integer systems that is by manipulating properties of singular values. The other is the computing H? norm graphically as peak value of bode magnitude plot.

References
  1. Monje, C. , A. , Vinagre, B. , M. , Chen, Y. , Q. , Feliu, V. , Lanusse, P. ,Sabatier, J. , "Proposals for fractional PID tuning", FDA 04, Bordeaux, France, 2004.
  2. Podlubny, I. , 1999, "Fractional-Order systems and PID-Controllers",inIEEE Trans. on Aut. Cont. , vol. 44, no. 1, pp. 208-214.
  3. Caponetto, R. , Fortuna, L. , Porto, D. , "A new tuning strategy for a non integer order PID controller", FDA 04, Bordeaux, France, 2004
  4. Chen, Y. , Q. , Moore, K. , L. , Vinagre, B. , M. , Podlubny, I. , "Robust PID controller auto tuning with a phase shaper", First IFAC workshop on Fractional Derivative and its Application, FDA 04, Bordeaux, France, 2004.
  5. Matignon, D. , July 1996, "Stability results on fractional differential equations with applications to control processing", in ComputationalEngineering in Systems and Application multiconference, vol. 2, pp. 963-968, IMACS, IEEE-SMC.
  6. Doyle and Stein. Robustness with observer. volume AC 24-4, pages 607–611. IEEE Transactions on Automatic Control, 1979.
  7. Battaglia, J-L. , Cois, O. , Puissegur, L. , Oustaloup, A. , "Solving an inverse heat conduction problem using a non-integer identified model", International Journal of Heat and Mass Transfer, Vol 44, pp 2671-2680, juillet 2001.
  8. Mathieu, B Oustaloup, A. , Mathieu, B. , 1999, La commande CRONE du scalaire au multivariable, Hermes Science Publications, Paris.
  9. Jocelyn Sabatier LamineFadiga, Christophe Farges and Mathieu Moze. "On computation of H?norm for commensurate fractional order systems". pages 12–15, Orlando, FL,USA, December 2011. IEEE Conference on Decision and Control and European Control Conference(CDC-ECC).
  10. K. B. Oldham and J. Spanier. The Fractional Calculus. Academic press, New York.
  11. John C. Doyle, Keith Glover, and Khargonekar. "State-space solutions to standard H2 and H?control problems". volume 34(8). IEEE Transactions on Automatic Control,
  12. Ivo Petras. Fractional Order Nonlinear System. Springer, 2011.
  13. Gahinet P. and Apkarian P. The linear matrix inequality approach to h?control,. volume 4, pages 421–448. Int. J. Robustand Nonlinear Control, 1994.
Index Terms

Computer Science
Information Sciences

Keywords

Fractional Order System (fos)