CFP last date
20 February 2025
Reseach Article

Analysis of Multi-Frequency Polarimetric SAR Data using Different Classification Techniques

Published on None 2011 by Varsha Turkar, Y.S.Rao
International Conference and Workshop on Emerging Trends in Technology
Foundation of Computer Science USA
ICWET - Number 14
None 2011
Authors: Varsha Turkar, Y.S.Rao
81239767-9671-48d0-ab97-2114e49f5748

Varsha Turkar, Y.S.Rao . Analysis of Multi-Frequency Polarimetric SAR Data using Different Classification Techniques. International Conference and Workshop on Emerging Trends in Technology. ICWET, 14 (None 2011), 53-60.

@article{
author = { Varsha Turkar, Y.S.Rao },
title = { Analysis of Multi-Frequency Polarimetric SAR Data using Different Classification Techniques },
journal = { International Conference and Workshop on Emerging Trends in Technology },
issue_date = { None 2011 },
volume = { ICWET },
number = { 14 },
month = { None },
year = { 2011 },
issn = 0975-8887,
pages = { 53-60 },
numpages = 8,
url = { /proceedings/icwet/number14/2175-is524/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Conference and Workshop on Emerging Trends in Technology
%A Varsha Turkar
%A Y.S.Rao
%T Analysis of Multi-Frequency Polarimetric SAR Data using Different Classification Techniques
%J International Conference and Workshop on Emerging Trends in Technology
%@ 0975-8887
%V ICWET
%N 14
%P 53-60
%D 2011
%I International Journal of Computer Applications
Abstract

Classification of polarimetric SAR images has become a very important topic after the availability of Polarimetric SAR images through different sensors like SIR-C, ALOS-PALSAR etc. The data over wet regions of India has been processed for classification of various land features like mangrove, ocean water, and clear water. In this study the utility of NASA’s Shuttle Imaging Radar-C (SIR-C) data is evaluated for wet regions of India. Supervised and unsupervised classification techniques are used to classify the data. The SIR-C data is acquired over Kolkata region of West Bengal, India. The results show that multipolarization and multi-frequency SAR data helps to classify wetlands effectively. The combinations of different polarizations from L- and C- band helps to improve the classification accuracy. It was found that the combinations of channels (L-HV, C-HH, C-HV) and (L-HH, C-HH, C-HV) gave the best overall accuracies. These two 3 channel combination can differentiate well the six classes. The five band combination L-HH, L-HV, L-VV, CHH, C-HV gives the highest classification accuracy. It is greater than the three band combinations as given above. By applying enhanced Lee filter the accuracy can be further increased. The enhanced Lee filter removes the speckle effectively. Among all the classifiers Maximum Likelihood classifier gives the best accuracy.

References
  1. Butera, M. K., (1983). “Remote Sensing of Wetlands”, IEEE Transactions on Geoscience and Remote Sensing, Vol. GE-21, No 3, pp. 383-392.
  2. Ghedira, H., Bernier, M., Ouarda, T., (2000). “Application of Neural Networks for Wetland Classification in RADARSAT SAR Imagery”, IEEE, pp.675–677.
  3. Bourgeau-Chavez, L. L. , Kasischke, E. S., Brunzell, S. M., Mudd, J. P., Smith, K. B. And Frick, A. L. (2001). “Analysis of space borne SAR data for wetland mapping in Virginia riparian ecosystems”, Int. j. remote sensing, vol. 22, pp.3665–3687.
  4. Townsend, P. A., (2002),"Estimating forest structure in wetlands using multitemporal SAR ", Remote Sensing of Environment, Vol.79, Issues 2-3, February 2002, pp. 288-304.
  5. Townsend, P. A., Foster, J. R., (2002). “Assessing Flooding and Vegetation Structure in Forested Wetlands using Radarsat SAR Imagery”, IEEE, pp.1171-1173
  6. Touzi, R. (2006). “Wetland characterization using polarimetric RADARSAT-2 capability”, IEEE, pp. 1639-1642.
  7. Ruan, R., Ren, L., (2007 ). “Identification of Inland Fresh Water Wetland Using SAR and ETM+ Data”, IEEE, pp. 4592-4595.
  8. Ruan, R., Ren, L., (2007). “Change Detection of Hongze Lake Wetland Using Rule-based Inferring”, IEEE, pp.1734-1737.
  9. Hong, J., Oh, Y., Hong, S., (2007). “Polarimetric Measurements of Radar Backscatters of a Wet-land Rice Field throughout a Growth Period at L- and C-bands”, IEEE, pp.3663-3666.
  10. Touzi, R., Deschamps, A. and Rother, G., (2007). “Wetland characterization using polarimetric RADARSAT-2 capability”, Can. J. Remote Sensing, Vol. 33, Suppl. 1, pp. S56- S67.
  11. Sato, R., Yamaguchi, Y., Yamada, H. and Boerner, W.M., (2008). “Seasonal change monitoring of wetlands by using airborne and satellite PALSAR sensing”, Proc. IGARSS, Vol. 2, pp. 289-292.
  12. Boerner, W.M., Yamaguchi, Y., (2008). “Recent Advances In POL-SAR & POL-IN-SAR Imaging of Natural Habitats and Wetland Remote Sensing”, IGARSS, Vol., pp. 293-294.
  13. Bourgeau-Chavez, L. L. , Riordan, K., Miller, N., Nowels, M. and Powell, R. (2008). “Remotely Monitoring Great Lakes Coastal Wetlands With Multi-Sensor, Multi-Temporal SAR And Multi-Spectral Data”, IGARSS, Vol, pp. 428-429.
  14. Yajima, Y., Yamaguchi, Y., Yamada, H., and Boerner, W.M., (2008). “POLSAR Image Analysis of Wetlands Using a Modified Four-Component Scattering Power Decomposition”, IEEE Transactions On Geoscience And Remote Sensing, Vol. 46, No. 6.
  15. Marti-Cardona, B., Lopez-Martinez, C., Dolz-Ripolles, J. (2009). “Analysis of asar/envisat polarimetric backscattering characteristics of Donana national park wetlands”, Proc. IGARSS, Vol. 2, pp. 721-724.
  16. Whitcomb, J., Moghaddam, M., McDonald, K., Podest, E. and Chapman, B. (2009). “Decadal change in northern wetlands based on differential analysis of Jers and Palsar Data”, Proc. IGARSS, Vol. 2, pp. 951-954.
  17. Sato, R., Yamaguchi and Yamada, H. (2009). “Polarimetric scattering feature estimation for accurate vegetation area classification”, Proc. IGARSS, Vol. 2, pp. 888-891.
  18. Sato, R., Yamaguchi and Yamada, H. (2009). “Analysis and Observation of Polarimetric Scattering Behavior in wetland area”, Proc. IGARSS, Vol. 2, pp. 853-856.
  19. Lawrence, R. L. and Wright, A. (2001). “Rule-based classification systems using classification and regression tree (CART) analysis”, Photogrammetric Engineering and Remote Sensing, 67(10), pp. 1137-1142.
  20. Laliberte, A. S., Koppa, J., Fredrickson, E. L. and Rango, A.(2006). “Comparison of nearest neighbor and rule-based decision tree classification in an object-oriented environment”, 2006 IEEE International Geoscience and Remote Sensing Symposium, Vols1-8, 3923-3926.
  21. Friedl, M. A. and Brodley, C. E. (1997). “Decision tree classification of land cover from remotely sensed data”, Remote Sensing of Environment, 61(3), pp. 399-409.
  22. Swain, P. H. and Hauska, H. (1977). “Decision tree classifier: design and potential”, IEEE Transactions on Geoscience and Remote Sensing, 15(3), pp. 142-147.
  23. Mclver, D. K. and Friedl, M. A. (2002). “Using prior probabilities in decision-tree classification of remotely sensed data”, Remote Sensing of Environment, 81, pp. 253-261.
  24. Qi a, Z., Yeh a, A.G., Li b, X., Lin b, Z. (2010). “ Land use and land cover classification using RADARSAT-2 polarimetric SAR image”, IAPRS, Vol. XXXVIII, Part 7A.
Index Terms

Computer Science
Information Sciences

Keywords

Radar polarimetry polarization synthetic aperture radar wetland speckle classification